1887

Abstract

A modified two-component regulatory system consisting of two response regulators, CorR and CorP, and the histidine protein kinase CorS, regulates the thermoresponsive production of the phytotoxin coronatine (COR) in PG4180. COR is produced at the virulence-promoting temperature of 18 °C, but not at 28 °C, the optimal growth temperature of PG4180. Assuming that the highly hydrophobic N-terminus of CorS might be involved in temperature-signal perception, the membrane topology of CorS was determined using translational and fusions, leading to a topological model for CorS with six transmembrane domains (TMDs). Interestingly, three PhoA fusions located downstream of the sixth TMD showed a thermoresponsive phenotype. Enzymic activity, immunoblot, and protease-sensitivity assays were performed to localize the CorS derivatives, to analyse the expression level of hybrid proteins and to examine the model. In-frame deletions of the last four, or all six TMDs gave rise to non-functional CorS. The results indicated that the transmembrane region is important for CorS to function as a temperature sensor, and that the membrane topology of CorS might be involved in signal perception.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27028-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502715.html?itemId=/content/journal/micro/10.1099/mic.0.27028-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D. 2001; Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691 [CrossRef]
    [Google Scholar]
  2. Alarcón-Chaidez F. J., Keith L., Zhao Y., Bender C. L. 2003; RpoN (σ54) is required for plasmid-encoded coronatine biosynthesis inPseudomonas syringae. Plasmid 49:106–117 [CrossRef]
    [Google Scholar]
  3. Aravind L., Ponting C. P. 1997; The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459 [CrossRef]
    [Google Scholar]
  4. Aravind L., Ponting C. P. 1999; The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116 [CrossRef]
    [Google Scholar]
  5. Bartsevich V. V., Pakrasi H. B. 1999; Membrane topology of MntB, the transmembrane protein component of an ABC transporter system for manganese in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 181:3591–3593
    [Google Scholar]
  6. Bateman A., Birney E., Cerruti L.7 other authors 2002; The Pfam protein families database. Nucleic Acids Res 30:276–280 [CrossRef]
    [Google Scholar]
  7. Bender C. L., Young S. A., Mitchell R. E. 1991; Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae. Appl Environ Microbiol 57:993–999
    [Google Scholar]
  8. Bender C. L., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. 1993; Characterization of the genes controlling biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 133:31–38 [CrossRef]
    [Google Scholar]
  9. Bilwes A. M., Alex L. A., Crane B. R., Simon M. I. 1999; Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141 [CrossRef]
    [Google Scholar]
  10. Blake M. S., Johnston K. H., Russel-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated antibody on Western blots. Anal Biochem 136:175–179 [CrossRef]
    [Google Scholar]
  11. Bogdanov M., Heacock P. N., Dowhan W. 2002; A polytropic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116 [CrossRef]
    [Google Scholar]
  12. Boyd D., Manoil C., Beckwith J. 1987; Determinants of membrane protein topology. Proc Natl Acad Sci U S A 84:8525–8529 [CrossRef]
    [Google Scholar]
  13. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  14. Budde I. P., Rohde B. H., Bender C., Ullrich M. S. 1998; Growth phase and temperature influence promoter activity, transcript abundance, and protein stability during biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 180:1360–1367
    [Google Scholar]
  15. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  16. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676 [CrossRef]
    [Google Scholar]
  17. Eriksson S., Hurme R., Rhen M. 2002; Low-temperature sensors in bacteria. Philos Trans R Soc Lond B 357:887–893 [CrossRef]
    [Google Scholar]
  18. Falke J. J., Hazelbauer G. L. 2001; Transmembrane signalling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265 [CrossRef]
    [Google Scholar]
  19. Figurski D. H., Helsinki D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1659 [CrossRef]
    [Google Scholar]
  20. Franke C. M., Tiemersma J., Venema G., Kok J. 1999; Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. J Biol Chem 274:8484–8490 [CrossRef]
    [Google Scholar]
  21. Fullner K. J., Nester E. W. 1996; Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504
    [Google Scholar]
  22. Grebe T. W., Stock J. B. 1999; The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227
    [Google Scholar]
  23. Guan L., Ehrmann M., Yoneyama H., Nakae T. 1999; Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA,B-OprM extrusion pump in Pseudomonas aeruginosa. J Biol Chem 274:10517–10522 [CrossRef]
    [Google Scholar]
  24. Guttierrez C., Devedjian J. C. 1989; A plasmid facilitating in vitro construction of phoA gene fusions in Escherichia coli. Nucleic Acids Res 17:3999 [CrossRef]
    [Google Scholar]
  25. Haardt M., Bremer E. 1996; Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system ofEscherichia coli. J Bacteriol 178:5370–5381
    [Google Scholar]
  26. Heath J. D., Charles T. C., Nester E. W. 1995; Ti plasmid and chromosomally encoded two-component systems important in plant cell transformation by Agrobacterium species. In Two-Component Signal Transduction pp 367–385 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Hennessey E. S., Broome-Smith J. K. 1993; Gene-fusion techniques for determining membrane-protein topology. Curr Opin Struct Biol 3:524–531 [CrossRef]
    [Google Scholar]
  28. Hirokawa T., Boon-Chieng S., Mitaku S. 1998; sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379 [CrossRef]
    [Google Scholar]
  29. Hoch J. A. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170 [CrossRef]
    [Google Scholar]
  30. Hugouvieux-Cotte-Pattat N., Dominguez H., Robert-Baudouy J. 1992; Environmental conditions affect transcription of pectinase genes of Erwinia chrysanthemi 3937. J Bacteriol 174:7807–7818
    [Google Scholar]
  31. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049 [CrossRef]
    [Google Scholar]
  32. Keane P. J., Kerr A., New P. B. 1970; Grown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  33. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmid for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  34. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  35. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  36. Manoil C., Beckwith J. 1986; A genetic approach to analyzing membrane protein topology. Science 233:1403–1408 [CrossRef]
    [Google Scholar]
  37. Manoil C., Boyd D., Beckwith J. 1988; Molecular genetic analysis of membrane protein topology. Trends Genet 4:223–226 [CrossRef]
    [Google Scholar]
  38. Mitchell R. E., Young S. A., Bender C. L. 1994; Coronamic acid, an intermediate in coronatine biosynthesis by Pseudomonas syringae. Phytochemistry 35:343–348 [CrossRef]
    [Google Scholar]
  39. Ouchane S., Kaplan S. 1999; Topological analysis of the membrane-localized redox-responsive sensor kinase PrrB from Rhodobacter sphaeroides. J Biol Chem 274:17290–17296 [CrossRef]
    [Google Scholar]
  40. Palmer D. A., Bender C. L. 1993; Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59:1619–1626
    [Google Scholar]
  41. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  42. Parry R. J., Mhaskar S. V., Lin M.-T., Walker A. E., Mafoti R. 1994; Investigations of the biosynthesis of the phytotoxin coronatine. Can J Chem 72:86–99 [CrossRef]
    [Google Scholar]
  43. Peñaloza-Vázquez A., Bender C. L. 1998; Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J Bacteriol 180:6252–6259
    [Google Scholar]
  44. Rangaswamy V., Bender C. L. 2000; Phosphorylation of CorR and CorR, regulatory proteins that modulate production of the phytotoxin coronatine in Pseudomonas syringae. FEMS Microbiol Lett 193:13–18 [CrossRef]
    [Google Scholar]
  45. Rowley K. B., Clements D. E., Mandel M., Humphreys T., Patil S. S. 1993; Multiple copies of a DNA sequence from Pseudomonas syringae pathovar phaseolicola abolish thermoregulation of phaseolotoxin production. Mol Microbiol 8:625–635 [CrossRef]
    [Google Scholar]
  46. Rutz C., Rosenthal W., Schuelein R. 1999; A single negatively charged residue affects the orientation of a membrane protein in the inner membrane of Escherichia coli only when it is located adjacent to a transmembrane domain. J Biol Chem 274:33757–33763 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  48. Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. 2000; smart: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234 [CrossRef]
    [Google Scholar]
  49. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology pp 175–182 Montreal, Canada: AAAI Press;
    [Google Scholar]
  50. Suzuki I., Los A. D., Kanesaki Y., Mikami K., Murata N. 2000; The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334 [CrossRef]
    [Google Scholar]
  51. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506
    [Google Scholar]
  52. Tusnády G. E., Simon I. 1998; Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506 [CrossRef]
    [Google Scholar]
  53. Ullrich M. S., Bender C. L. 1994; The biosynthetic gene cluster for coromanic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J Bacteriol 176:7574–7586
    [Google Scholar]
  54. Ullrich M. S., Bailey A. M., Bender C. L, Peñaloza-Vázquez A. 1995; A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 177:6160–6169
    [Google Scholar]
  55. Van den Eede G., Deblaere R., Goethals K., Montagu M. V., Holsters M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants. Mol Plant–Microbe Interact 5:228–234 [CrossRef]
    [Google Scholar]
  56. Van Dijk K., Fouts D. E., Rehm A. H., Hill A. R., Collmer A., Alfano J. R. 1999; The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. J Bacteriol 181:4790–4797
    [Google Scholar]
  57. Wang L., Bender C. L., Ullrich M. S. 1999; The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the the cmaABT promoter region in a temperature-dependent manner. Mol Gen Genet 262:250–260 [CrossRef]
    [Google Scholar]
  58. Xiao Y., Lu Y., Heu S., Hutcheson S. W. 1992; Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J Bacteriol 174:1734–1741
    [Google Scholar]
  59. Zhang M., Wang G., Shapiro A., Zhang J. T. 1996; Topological folding and proteolysis profile of P-glycoprotein in membranes of mutidrug-resistant cells: implications for the drug-transport mechanism. Biochemistry 35:9728–9736 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27028-0
Loading
/content/journal/micro/10.1099/mic.0.27028-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error