1887

Abstract

is an important pathogen of humans, causing a range of superficial and potentially life-threatening diseases. Infection of the fruit fly with results in systemic infection followed by death. Screening of defined mutants for components important in pathogenesis identified and , with fly death up to threefold slower after infection with the respective mutants compared to the wild-type. Infection of with reporter gene fusion strains demonstrated the expression levels of the accessory gene regulator, , -toxin, , and a manganese transporter, . The use of the green fluorescent protein as a reporter under the control of the promoter (P3) showed microcolony formation . The disease model also allowed the effect of antibiotic treatment on the flies to be determined. is a genetically tractable model host for high-throughput analysis of virulence determinants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27116-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502347.html?itemId=/content/journal/micro/10.1099/mic.0.27116-0&mimeType=html&fmt=ahah

References

  1. Abdelnour A., Arvidson S., Bremell T., Ryden C., Tarkowski A. 1993; The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun 61:3879–3885
    [Google Scholar]
  2. Aish J. 2003; Environmental regulation of virulence determinant expression in Staphylococcus aureus. PhD thesis University of Sheffield;
    [Google Scholar]
  3. Cheung A. L., Nast C. C., Bayer A. S. 1998; Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect Immun 66:5988–5993
    [Google Scholar]
  4. Compagnone-Post P., Malyankar U., Khan S. A. 1991; Role of host factors in the regulation of the enterotoxin B gene. J Bacteriol 173:1827–1830
    [Google Scholar]
  5. Darby C., Cosma C. L., Thomas J. H., Manoil C. 1999; Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:15202–15207 [CrossRef]
    [Google Scholar]
  6. D'Argenio D. A., Gallagher L. A., Berg C. A., Manoil C. 2000; Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183:1466–1471
    [Google Scholar]
  7. Dionne M. S., Ghori N., Schneider D. S. 2003; Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect Immun 71:3540–3550 [CrossRef]
    [Google Scholar]
  8. Fauvarque M. O., Bergeret E., Chabert J., Dacheux D., Satre M., Attree I. 2002; Role and activation of type III secretion system genes in Pseudomonas aeruginosa induced Drosophila killing. . Microb Pathog 32:287–295 [CrossRef]
    [Google Scholar]
  9. Garsin D. A., Sifri C. D., Mylonakis E., Qin X., Singh K. V., Murray B. E., Calderwood S. B., Ausubel F. M. 2001; A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98:10892–10897 [CrossRef]
    [Google Scholar]
  10. Goerke C., Fluckiger U., Steinhuber A., Zimmerli W., Wolz C. 2001; Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol 40:1439–1447 [CrossRef]
    [Google Scholar]
  11. Horsburgh M. J., Clements M. O., Crossley H., Ingham E., Foster S. J. 2001a; PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69:3744–3754 [CrossRef]
    [Google Scholar]
  12. Horsburgh M. J., Ingham E., Foster S. J. 2001b; In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475 [CrossRef]
    [Google Scholar]
  13. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. 2002a; σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467 [CrossRef]
    [Google Scholar]
  14. Horsburgh M. J., Wharton S. J., Cox A. G., Ingham E., Peacock S., Foster S. J. 2002b; MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286 [CrossRef]
    [Google Scholar]
  15. Horsburgh M. J., Wiltshire M. D., Crossley H., Ingham E., Foster S. J. 2004; PheP, a putative amino acid permease of Staphylococcus aureus contributes to survival in vivo and during starvation. . Infect Immun 72:3073–3076 [CrossRef]
    [Google Scholar]
  16. Kaito C., Akimitsu N., Watanabe H., Sekimizu K. 2002; Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 32:183–190 [CrossRef]
    [Google Scholar]
  17. Karavolos M. H., Horsburgh M. J., Ingham E., Foster S. J. 2003; Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149:2749–2758 [CrossRef]
    [Google Scholar]
  18. Kurz C. L., Ewbank J. J. 2003; Caenorhabtidis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4:380–390
    [Google Scholar]
  19. Lemaitre B., Reachhart J. M., Hoffmann J. A. 1997; Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94:14614–14619 [CrossRef]
    [Google Scholar]
  20. Leulier F., Parquet C., Pili-Floury S., Ryu J. H., Caroff M., Lee W. J., Mengin-Lecreulx D., Lemaitre B. 2003; The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484 [CrossRef]
    [Google Scholar]
  21. Mansfield B. E., Dionne M. S., Schneider D. S., Freitag N. E. 2003; Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5:901–911 [CrossRef]
    [Google Scholar]
  22. Neely M. N., Pfeifer J. D., Caparon M. 2002; Streptococcus-Zebrafish model of bacterial pathogenesis. Infect Immun 70:3904–3914 [CrossRef]
    [Google Scholar]
  23. Novick R. 1967; Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33:155–166 [CrossRef]
    [Google Scholar]
  24. Pili-Floury S., Leulier F., Takahashi K., Saigo K., Samain E., Ueda R., Lemaitre B. 2004; In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853 [CrossRef]
    [Google Scholar]
  25. Qazi S. N. A., Counil E., Morrissey J., Rees C. E. D., Cockayne A., Winzer K., Chan W. C., Williams P., Hill P. J. 2001; agr expression precedes escape of internalised Staphylococcus aureus from the host endosome. Infect Immun 69:7074–7082 [CrossRef]
    [Google Scholar]
  26. Rahme L. G., Tan M. W., Le L., Wong S. M., Tompkins R. G., Calderwood S. B., Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250 [CrossRef]
    [Google Scholar]
  27. Sifri C. D., Begun J., Ausubel F. M., Calderwood S. B. 2003; Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. . Infect Immun 71:2208–2217 [CrossRef]
    [Google Scholar]
  28. Solomon J. M., Rupper A., Cardelli J. A., Isberg R. R. 2000; Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68:2939–2947 [CrossRef]
    [Google Scholar]
  29. Somerville G. A., Chaussee M. S., Morgan C. I., Fitzgerald J. R., Dorward D. W., Reitzer L. J., Musser J. M. 2002; Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 70:6373–6382 [CrossRef]
    [Google Scholar]
  30. Takeda K., Akira S. 2003; Toll receptors and pathogen resistance. Cell Microbiol 5:143–153 [CrossRef]
    [Google Scholar]
  31. Tan M. W., Ausubel F. M. 2000; Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3:29–34 [CrossRef]
    [Google Scholar]
  32. Tarkowski A., Collins L. V., Gjertsson I., Hultgren O. H., Jonsson I. M., Sakiniene E., Verdrengh M. 2001; Model systems: modelling human staphylococcal arthritis and sepsis in the mouse. Trends Microbiol 9:321–326 [CrossRef]
    [Google Scholar]
  33. Valenti-Weigand P., Benkel P., Rohde M., Chhatwal G. S. 1996; Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64:2467–2473
    [Google Scholar]
  34. van der Sar A. M., Musters R. J. P., van Eden F. J. M., Appelmelk B. J., Vandenbroucke-Grauls C. M. J. E., Bitter W. 2003; Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5:601–611 [CrossRef]
    [Google Scholar]
  35. Waldvogel F. A. 1995; Staphylococcus aureus (including toxic shock syndrome. In Principles and Practice of Infectious Diseases, pp. 1754–1777Edited by Mandell G. L., Bennett J. E., Dolin R. New York: Churchill Livingstone;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27116-0
Loading
/content/journal/micro/10.1099/mic.0.27116-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error