1887

Abstract

must overcome a variety of stress conditions in the host digestive tract to cause foodborne infections. The alternative sigma factor , encoded by , is responsible for regulating transcription of several virulence and stress-response genes, including genes that contribute to establishment of gastrointestinal infections. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the virulence genes and , the stress-response genes and (encoding a carnitine transporter and an oxidoreductase, respectively) and the housekeeping gene . Assays were conducted on mid-exponential phase cells exposed to conditions reflecting osmotic (0·3 M NaCl) or acid (pH 4·5) conditions typical for the human intestinal lumen. In exponential-phase cells, as well as under osmotic and acid stress, , and showed significantly lower absolute expression levels in a Δ null mutant compared to wild-type. A statistical model that normalized target gene expression relative to showed that accumulation of , and transcripts was significantly increased in the wild-type strain within 5 min of acid and osmotic stress exposure; transcript accumulation increased significantly only after acid exposure. It was concluded that is essential for rapid induction of the tested stress-response and virulence genes under conditions typically encountered during gastrointestinal passage. As , and are critical for gastrointestinal infections in animal models, the data also suggest that contributes to the ability of to cause foodborne infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27257-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503843.html?itemId=/content/journal/micro/10.1099/mic.0.27257-0&mimeType=html&fmt=ahah

References

  1. Badger J. L., Miller V. L. 1995; Role of RpoS in survival of Yersinia enterocolitica to a variety of environmental stresses. J Bacteriol 177:5370–5373
    [Google Scholar]
  2. Becker L. A., Cetin M. S., Hutkins R. W., Benson A. K. 1998; Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180:4547–4554
    [Google Scholar]
  3. Becker L. A., Evans S. N., Hutkins R. W., Benson A. K. 2000; Role of σB in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 182:7083–7087 [CrossRef]
    [Google Scholar]
  4. Bishop D. K., Hinrichs D. J. 1987; Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139:2005–2009
    [Google Scholar]
  5. Brody M. S., Price C. W. 1998; Bacillus licheniformis sigB operon encoding the general stress transcription factor sigma B. Gene 212:111–118 [CrossRef]
    [Google Scholar]
  6. Cetin M. S., Zhang C., Hutkins R. W., Benson A. K. 2004; Regulation of transcription of compatible solute transporters by the general stress sigma factor, σB, in Listeria monocytogenes . J Bacteriol 186:794–802 [CrossRef]
    [Google Scholar]
  7. Chakraborty T., Leimeister-Wachter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574
    [Google Scholar]
  8. Cheville A. M., Arnold K. W., Buchrieser C., Cheng C. M., Kaspar C. W. 1996; rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157 : H7. Appl Environ Microbiol 62:1822–1824
    [Google Scholar]
  9. Chowduhry R., Sahu G. K., Das J. 1996; Stress response in pathogenic bacteria. J Biosci 21:149–160 [CrossRef]
    [Google Scholar]
  10. Cole M. B., Jones M. V., Holyoak C. 1990; The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes . J Appl Bacteriol 69:63–72 [CrossRef]
    [Google Scholar]
  11. Davenport H. W. 1982 Physiology of the Digestive Tract: an Introductory Text, 5th edn. Chicago: Year Book Medical Publishers;
    [Google Scholar]
  12. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P. 2002; Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106 [CrossRef]
    [Google Scholar]
  13. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. 1992; The alternative σ factor KatF (RpoS) regulates Salmonella virulence. . Proc Natl Acad Sci U S A 89:11978–11982 [CrossRef]
    [Google Scholar]
  14. Farber J. M., Peterkin P. I. 1991; Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511
    [Google Scholar]
  15. Ferreira A., O'Byrne C. P., Boor K. J. 2001; Role of σB in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation inListeria monocytogenes . Appl Environ Microbiol 67:4454–4457 [CrossRef]
    [Google Scholar]
  16. Ferreira A., Sue D., O'Byrne C. P., Boor K. J. 2003; Role of Listeria monocytogenes σB in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69:2692–2698 [CrossRef]
    [Google Scholar]
  17. Flamm R. K., Hinrichs D. J., Thomashow M. F. 1984; Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between nativeL. monocytogenes plasmids. Infect Immun 44:157–161
    [Google Scholar]
  18. Fouet A., Namy O., Lambert G. 2000; Characterization of the operon encoding the alternative σB factor from Bacillus anthracis and its role in virulence. J Bacteriol 182:5036–5045 [CrossRef]
    [Google Scholar]
  19. Fraser K. R., Sue D., Wiedmann M., Boor K. J. 2003; Role of σB in regulating the compatible solute uptake systems ofListeria monocytogenes:osmotic induction of opuC is σB-dependent. Appl Environ Microbiol 69:2015 2022 [CrossRef]
    [Google Scholar]
  20. Freitag N. E., Portnoy D. A. 1994; Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essentialin vitro but are redundant in vivo . Mol Microbiol 12:845–853 [CrossRef]
    [Google Scholar]
  21. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:1127–1141 [CrossRef]
    [Google Scholar]
  22. Gertz S., Engelmann S., Schmid R., Ziebandt A. K., Tischer K., Scharf C., Hacker J., Hecker M. 2000; Characterization of the σB regulon in Staphylococcus aureus . J Bacteriol 182:6983–6991 [CrossRef]
    [Google Scholar]
  23. Giulietti A., Overbergh L., Valckx D., Decallonne B., Bouillon R., Mathieu C. 2001; An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401 [CrossRef]
    [Google Scholar]
  24. Graham M. R., Smoot L. M., Migliaccio C. A. 7 other authors 2002; Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860 [CrossRef]
    [Google Scholar]
  25. Haldenwang W. G., Losick R. 1980; Novel RNA polymerase σ factor from Bacillus subtilis . Proc Natl Acad Sci U S A 77:7000–7004 [CrossRef]
    [Google Scholar]
  26. Hansen M. C., Nielsen A. K., Molin S., Hammer K., Kilstrup M. 2001; Changes in rRNA levels during stress invalidate results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol 183:4747–4751 [CrossRef]
    [Google Scholar]
  27. Helmann J. D., Wu M. F., Kobel P. A., Gamo F. J., Wilson M., Morshedi M. M., Navre M., Paddon C. 2001; Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328 [CrossRef]
    [Google Scholar]
  28. Igo M., Lampe M., Ray C., Schafer W., Moran C. P., Losick R. 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol 169:3464–3469
    [Google Scholar]
  29. Ihaka R., Gentleman R. 1996; R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314
    [Google Scholar]
  30. Iriarte M., Stainier I., Cornelis G. R. 1995; The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 63:1840–1847
    [Google Scholar]
  31. Johansson J., Mandin P., Renzoni A., Chiaruttini C., Springer M., Cossart P. 2002; An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110:551–561 [CrossRef]
    [Google Scholar]
  32. Kazmierczak M. J., Mithoe S. C., Boor K. J., Wiedmann M. 2003; Listeria monocytogenes σB regulates stress response and virulence functions. J Bacteriol 185:5722–5734 [CrossRef]
    [Google Scholar]
  33. Lecuit M., Vandormael-Pournin S., Lefort J., Huerre M., Gounon P., Dupuy C., Babinet C., Cossart P. 2001; A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725 [CrossRef]
    [Google Scholar]
  34. Lee P. S., Shaw L. B., Choe L. H., Mehra A., Hatzimanikatis V., Lee K. H. 2003; Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84:834–841 [CrossRef]
    [Google Scholar]
  35. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  36. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [CrossRef]
    [Google Scholar]
  37. Milohanic E., Glaser P., Coppee J. Y., Frangeul L., Vega Y., Vazquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625 [CrossRef]
    [Google Scholar]
  38. Nadon C., Bowen B., Wiedmann M., Boor K. J. 2002; σB contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70:3948–3952 [CrossRef]
    [Google Scholar]
  39. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Volker U., Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631 [CrossRef]
    [Google Scholar]
  40. Price C. W., Fawcett P., Su N., Murphy C. K., Youngman P, Cérémonie H. 2001; Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41:757–774
    [Google Scholar]
  41. Silva M. C., Batt C. A. 1995; Effect of cellular physiology on PCR amplification efficiency. Mol Ecol 4:11–16 [CrossRef]
    [Google Scholar]
  42. Sleator R. D., Gahan C. G. M., O'Driscoll B., Hill C. 2000; Analysis of the role of betL in contributing to the growth and survival ofListeria monocytogenes LO28. Int J Food Microbiol 60:261–268 [CrossRef]
    [Google Scholar]
  43. Sleator R. D., Wouters J., Gahan C. G., Abee T., Hill C. 2001; Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes . Appl Environ Microbiol 67:2692–2698 [CrossRef]
    [Google Scholar]
  44. Small P., Blankenhorn D., Welty D., Zinser E., Slonczewski J. L. 1994; Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176:1729–1737
    [Google Scholar]
  45. Smoot L. M., Smoot J. C., Graham M. R., Somerville G. A., Sturdevant D. E., Migliaccio C. A., Sylva G. L., Musser J. M. 2001; Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 98:10416–10421 [CrossRef]
    [Google Scholar]
  46. Sue D., Boor K. J., Wiedmann M. 2003; σB-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase genebsh in Listeria monocytogenes . Microbiology 149:3247–3256 [CrossRef]
    [Google Scholar]
  47. Takami H., Takaki Y., Uchiyama I. 2002; Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935 [CrossRef]
    [Google Scholar]
  48. Vandecasteele S. J., Peetermans W. E., Merckx R., Van Eldere J. 2001; Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101 [CrossRef]
    [Google Scholar]
  49. Venables W. N., Ripley B. D. 2002 Modern Applied Statistics with S, 4th edn. New York: Springer;
    [Google Scholar]
  50. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J. 1998; General stress transcription factor σB and its role in acid tolerance and virulence ofListeria monocytogenes . J Bacteriol 180:3650–3656
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27257-0
Loading
/content/journal/micro/10.1099/mic.0.27257-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error