1887

Abstract

A cell-wall-associated phosphatase in hyphae of , a fungal pathogen causing chromoblastomycosis, was previously characterized by the authors. In the present work, the expression of an acidic ectophosphatase activity in conidial forms was investigated. The surface phosphatase activity in is associated with the cell wall, as demonstrated by transmission electron microscopy. This enzyme activity was strongly inhibited by exogenous inorganic phosphate (P). Accordingly, removal of P from the culture medium of resulted in a marked (130-fold) increase of ectophosphatase activity. With the artificial phosphatase substrate -nitrophenyl phosphate, a value of 0·63±0·04 mM was estimated for the phosphatase activity of fungal cells strongly expressing the enyzme activity. This enzyme activity was not modulated by cations. Conidia with greater ectophosphatase activity showed greater adherence to mammalian cells than did fungi cultivated in the presence of P (low phosphatase activity). Surface phosphatase activity was apparently involved in the adhesion to host cells, since the enhanced attachment of to host cells was reversed by pre-treatment of conidia with phosphatase inhibitor. Since conidial forms are the putative infectious propagules in chromoblastomycosis, the expression and activity of acidic surface phosphatases in these cells may contribute to the early mechanisms required for disease establishment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27405-0
2004-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503355.html?itemId=/content/journal/micro/10.1099/mic.0.27405-0&mimeType=html&fmt=ahah

References

  1. Alviano, C. S., Farbiarz, S. R., De Souza, W., Angluster, J. & Travassos, L. R.(1991). Characterization of Fonsecaea pedrosoi melanin. J Gen Microbiol 137, 837–844.[CrossRef] [Google Scholar]
  2. Alviano, C. S., Farbiarz, S. R., Travassos, L. R., Angluster, J. & De Souza, W.(1992). Effect of environmental factors on Fonsecaea pedrosoi morphogenesis with emphasis on sclerotic cells induced by propranolol. Mycopathologia 119, 17–23.[CrossRef] [Google Scholar]
  3. Alviano, D. S., Kneipp, L. F., Lopes, A. H., Travassos, L. R., Meyer-Fernandes, J. R., Rodrigues, M. L. & Alviano, C. S.(2003). Differentiation of Fonsecaea pedrosoi mycelial forms into sclerotic cells is induced by platelet-activating factor. Res Microbiol 154, 689–695.[CrossRef] [Google Scholar]
  4. Arnold, W. N., Mann, L. C., Sakai, K. H., Garrison, R. G. & Coleman, P. D.(1986). The acid phosphatases of Sporothrix schenckii. J Gen Microbiol 132, 3421–3432. [Google Scholar]
  5. Arnold, W. N., Garrison, R. G., Mann, L. C. & Wallace, D. P.(1988). The acid phosphatases of Thermoascus crustaceus, a thermophilic fungus. Microbios 54, 102–112. [Google Scholar]
  6. Bernard, M., Mouyna, I., Dubreucq, G., Debeaupuis, J.-P., Fontaine, T., Vorgias, C., Fuglsang, C. & Latgé, J.-P.(2002). Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148, 2819–2829. [Google Scholar]
  7. Braibant, M. & Content, J.(2001). The cell surface associated phosphatase activity of Mycobacterium bovis BCG is not regulated by environmental inorganic phosphate. FEMS Microbiol Lett 195, 121–126.[CrossRef] [Google Scholar]
  8. De Hoog, G. S., Queiroz-Telles, F., Haase, G. & 10 other authors(2000). Black fungi: clinical and pathogenic approaches. Med Mycol 38 (Suppl 1), 243–250.[CrossRef] [Google Scholar]
  9. Dickman, M. B. & Yarden, O.(1999). Serine/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet Biol 26, 99–117.[CrossRef] [Google Scholar]
  10. Dutra, P. M. L., Rodrigues, C. O., Jesus, J. B., Lopes, A. H. C. S., Souto-Padrón, T. & Meyer-Fernandes, J. R.(1998). A novel ecto-phosphatase activity of Herpetomonas muscarum muscarum inhibited by platelet-activating factor. Biochem Biophys Res Commun 253, 164–169.[CrossRef] [Google Scholar]
  11. Esterre, P., Jahevitra, M. & Andriantsimahavandy, A.(2000). Humoral immune response in chromoblastomycosis during and after therapy. Clin Diagn Lab Immunol 7, 497–500. [Google Scholar]
  12. Fabra, A. R., Restrepo, A. M. & Istúriz, R. E.(1994). Fungal infection in Latin American countries. Infect Dis Clin North Am 8, 129–154. [Google Scholar]
  13. Fernandes, E. C., Meyer-Fernandes, J. R., Silva-Neto, M. A. C. & Vercesi, A. E.(1997).Trypanosoma brucei: ecto-phosphatase activity on the surface of intact procyclic forms. Z Naturforsch 52c, 351–358. [Google Scholar]
  14. Fernando, P. H. P., Panagoda, G. J. & Samaranayare, L. P.(1999). The relation between the acid and alkaline phosphatase activity and the adherence of clinical isolates of Candida parapsilosis to human buccal epithelial cells. APMIS 107, 1034–1042.[CrossRef] [Google Scholar]
  15. Freshney, R. I.(1994).Culture of Animal Cells: a Manual of Basic Technique. New York: Wiley-Liss.
  16. González, F. J., Fauste, C., Burguillo, F. J. & Domínguez, A.(1993). Kinetic behaviour of a repressible acid phosphatase from yeast Yarrowia lipolytica: a comparative study between the solubilized enzyme, the enzyme bound to cell-wall fragments and the enzyme bound to intact cells. Biochim Biophys Acta 1162, 17–27.[CrossRef] [Google Scholar]
  17. Gordon, J. A.(1991). Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201, 447–482. [Google Scholar]
  18. Hamza, S. H., Mercado, P. G., Skelton, H. G. & Smith, K. J.(2003). An unusual dematiaceous fungal infection of the skin caused by Fonsecaea pedrosoi: a case report and review of the literature. J Cutan Pathol 30, 340–343.[CrossRef] [Google Scholar]
  19. Hulett, F. M.(1996). The signal-transduction network for pho regulation in Bacillus subtilis. Mol Microbiol 19, 933–939.[CrossRef] [Google Scholar]
  20. Hunter, T.(1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236.[CrossRef] [Google Scholar]
  21. Jacob, M. M., Nyc, J. F. & Brown, D. M.(1971). Isolation and chemical properties of a repressible acid phosphatase in Neurospora crassa. J Biol Chem 246, 1419–1425. [Google Scholar]
  22. Jolivet, P., Queiroz-Claret, C., Bergeron, E. & Meunier, J.-C.(1998). Characterization of an exocellular protein phosphatase with dual substrate specificity from the yeast Yarrowia lipolytica. Int J Biochem Cell Biol 30, 783–796.[CrossRef] [Google Scholar]
  23. Kneipp, L. F., Palmeira, V. F., Pinheiro, A. A. S., Alviano, C. S., Rozental, S., Travassos, L. R. & Meyer-Fernandes, J. R.(2003). Phosphatase activity on the cell wall of Fonsecaea pedrosoi. Med Mycol 41, 469–477.[CrossRef] [Google Scholar]
  24. Koga, T., Matsuda, T., Matsumoto, T. & Furue, M.(2003). Therapeutic approaches to subcutaneous mycoses. Am J Clin Dermatol 4, 537–543.[CrossRef] [Google Scholar]
  25. Kwon-Chung, K. J. & Bennett, J. E.(1992). Chromoblastomycosis. In Medical Mycology, pp. 337–355. Edited by K. J. Kwon-Chung & J. E. Bennett. Philadelphia: Lea & Febiger.
  26. MacRae, W. D., Buxton, F. P., Sibley, S., Garven, S., Gwynne, D. I., Davies, R. W. & Arst, H. N.(1988). A phosphate-repressible acid phosphatase gene from Aspergillus niger: its cloning, sequencing and transcriptional analysis. Gene 71, 339–348.[CrossRef] [Google Scholar]
  27. Madhani, H. D. & Fink, G. R.(1998). The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8, 348–353.[CrossRef] [Google Scholar]
  28. Metzenberg, R.(1979). Implications of some genetic control mechanisms in Neurospora. Microbiol Rev 43, 361–383. [Google Scholar]
  29. Meyer-Fernandes, J. R., Silva-Neto, M. A. C., Soares, M. S., Fernandes, E., Vercesi, A. E. & Oliveira, M. M.(1999). Ecto-phosphatase activities on the cell surface of the amastigote forms of Trypanosoma cruzi. Z Naturforsch 54c, 977–984. [Google Scholar]
  30. Mildner, P., Ries, B. & Barbaric, S.(1975). Acid phosphatase and adenosine triphosphatase activities in the cell wall of baker's yeast. Biochim Biophys Acta 391, 67–74.[CrossRef] [Google Scholar]
  31. Novick, P., Ferro, S. & Schekman, R.(1981). Order of events in the yeast secretory pathway. Cell 25, 461–469.[CrossRef] [Google Scholar]
  32. Ogawa, N., DeRisi, J. & Brown, P. O.(2000). New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11, 4309–4321.[CrossRef] [Google Scholar]
  33. Oliveira, L. G., Resende, M. A., Lopes, C. F. & Cisalpino, E. D.(1973). Isolamento e identificação dos agentes da cromomicose em Belo Horizonte. Rev Soc Brasil Med Trop 7, 7–10.[CrossRef] [Google Scholar]
  34. Oshima, Y., Ogawa, N. & Harashima, S.(1996). Regulation of phosphatase synthesis in Saccharomyces cerevisiae – a review. Gene 179, 171–177.[CrossRef] [Google Scholar]
  35. Payne, W. E., Gannon, P. M. & Kaiser, C. A.(1995). An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product. Gene 163, 19–26.[CrossRef] [Google Scholar]
  36. Rippon, J. W.(1988). Chromoblastomycosis. In Medical Mycology, pp. 276–296. Edited by J. W. Rippon. Philadelphia: W. B. Saunders.
  37. Silva, J. P., De Souza, W. & Rozental, S.(1999). Chromoblastomycosis: a retrospective study of 325 cases on Amazonic Region (Brazil). Mycopathologia 143, 171–175. [Google Scholar]
  38. Suresh, K. & Subramanyam, C.(1997). A putative role for calmodulin in the activation of Neurospora crassa chitin synthase. FEMS Microbiol Lett 150, 95–100.[CrossRef] [Google Scholar]
  39. Tanuma, H., Hiramatsu, M., Mukai, H., Abe, M., Kume, H., Nishiyama, S. & Katsuoka, K.(2000). Case report. A case of chromoblastomycosis effectively treated with terbinafine. Characteristics of chromoblastomycosis in the Kitasato region, Japan. Mycoses 43, 79–83.[CrossRef] [Google Scholar]
  40. Toh-e, A.(1989). In Genetic Engineering, pp. 41–52. Edited by P. J. Barr, A. J. Brake & P. Valenzuela. Boston: Butterworths.
  41. Torriani-Gorini, A., Silver, S. & Yagil, E.(1994).Phosphate in Microorganisms: Cellular and Molecular Biology. Washington DC: American Society for Microbiology.
  42. Touati, E., Dassa, E., Dassa, J. & Boquet, P. L.(1987). Acid phosphatase (pH 2·5) of Escherichia coli: regulatory characteristics. In Microorganisms, pp. 31–40. Edited by A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright & E. Yagil. Washington, DC: American Society for Microbiology.
  43. Vasileva-Tonkova, E., Balasheva, D. M. & Galabova, D.(1996). Influence of growth temperature on the acid phosphatase activity in the yeast Yarrowia lipolytica. FEMS Microbiol Lett 145, 267–271.[CrossRef] [Google Scholar]
  44. Vogel, K. & Hinnen, A.(1990). The yeast phosphatase system. Mol Microbiol 4, 2013–2017.[CrossRef] [Google Scholar]
  45. Zhan, X.-L., Hong, Y., Zhu, T., Mitchel, A. P., Deschenes, R. J. & Guan, K.-L.(2000). Essential functions of protein tyrosine phosphatases Ptp2 and Ptp3 and Rim11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation. Mol Biol Cell 11, 663–676.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27405-0
Loading
/content/journal/micro/10.1099/mic.0.27405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error