1887

Abstract

encodes the major catalase that accounts for 90 % of the total catalase activity present in pv. . is located upstream of an ORF designated encoding a cytoplasmic membrane protein homologous to eukaryotic ankyrin. Transcriptional analysis of and identified two transcripts: a major monocistronic transcript and a minor bicistronic transcript. KatA expression was induced in the presence of various oxidants including HO, organic hydroperoxides and the superoxide-generating agent menadione, in an OxyR-dependent manner. Analysis of the promoter region showed a putative OxyR binding site located upstream of an -like −35 region that is likely to be responsible for transcription activation in response to oxidant treatment. Gel mobility shift experiments confirmed that purified OxyR specifically binds to the promoter. A mutant was highly sensitive to HO during both the exponential and stationary phases of growth. This phenotype could be complemented by functional , confirming the essential role of the gene in protecting from HO toxicity. Unexpectedly, inactivation of also significantly reduced resistance to HO and the phenotype could be complemented by plasmid-borne expression of . Physiological analyses showed that plays an important role in, but is not solely responsible for, both the adaptive and menadione-induced cross-protective responses to HO killing in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27598-0
2005-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510597.html?itemId=/content/journal/micro/10.1099/mic.0.27598-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–826 828
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Beers R. F., Sizer I. W. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–135
    [Google Scholar]
  4. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  5. Carpena X., Soriano M., Klotz M. G., Duckworth H. W., Donald L. J., Melik-Adamyan W., Fita I., Loewen P. C. 2003; Structure of the clade 1 catalase, CatF of Pseudomonas syringae, at 1·8 Å resolution. Proteins 50:423–436 [CrossRef]
    [Google Scholar]
  6. Chauvatcharin N., Vattanaviboon P., Switala J., Loewen P. C., Mongkolsuk S. 2003; Cloning and characterization of katA, encoding the major monofunctional catalase from Xanthomonas campestris pv. phaseoli, and characterization of the encoded catalase KatA. Curr Microbiol 46:83–87 [CrossRef]
    [Google Scholar]
  7. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  8. Farr S. B., Kogoma T. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium . Microbiol Rev 55:561–585
    [Google Scholar]
  9. Fuangthong M., Mongkolsuk S. 1997; Isolation and characterization of a multiple peroxide resistant mutant from Xanthomonas campestris pv. phaseoli. FEMS Microbiol Lett 152:189–194 [CrossRef]
    [Google Scholar]
  10. Hahn J. S., Oh S. Y., Roe J. H. 2002; Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J Bacteriol 184:5214–5222 [CrossRef]
    [Google Scholar]
  11. Howell M. L., Alsabbagh E., Ma J. F. & 10 other authors; 2000; AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 182:4545–4556 [CrossRef]
    [Google Scholar]
  12. Katzen F., Becker A., Zorreguieta A., Puhler A., Ielpi L. 1996; Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 178:4313–4318
    [Google Scholar]
  13. Klotz M. G., Klassen G. R., Loewen P. C. 1997; Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14:951–958 [CrossRef]
    [Google Scholar]
  14. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M 2nd, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  15. Loprasert S., Fuangthong M., Whangsuk W., Atichartpongkul S., Mongkolsuk S. 2000; Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Mol Microbiol 37:1504–1514 [CrossRef]
    [Google Scholar]
  16. Mongkolsuk S., Loprasert S., Vattanaviboon P., Chanvanichayachai C., Chamnongpol S., Supsamran N. 1996; Heterologous growth phase- and temperature-dependent expression and H2O2 toxicity protection of a superoxide-inducible monofunctional catalase gene fromXanthomonas oryzae pv. oryzae. J Bacteriol 178:3578–3584
    [Google Scholar]
  17. Mongkolsuk S., Vattanaviboon P., Praitaun W. 1997a; Induced adaptive and cross-protection responses against oxidative stress killing in a bacterial phytopathogen, Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett 146:217–221 [CrossRef]
    [Google Scholar]
  18. Mongkolsuk S., Loprasert S., Whangsuk W., Fuangthong M., Atichartpongkun S. 1997b; Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene (ahpC) and the peroxide regulator operonahpF-oxyR-orfX from Xanthomonas campestris pv. phaseoli. J Bacteriol 179:3950–3955
    [Google Scholar]
  19. Mongkolsuk S., Praituan W., Loprasert S., Fuangthong M., Chamnongpol S. 1998a; Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation fromXanthomonas campestris pv. phaseoli. J Bacteriol 180:2636–2643
    [Google Scholar]
  20. Mongkolsuk S., Sukchawalit R., Loprasert S., Praituan W., Upaichit A. 1998b; Construction and physiological analysis of a Xanthomonas mutant to examine the role of the oxyR gene in oxidant-induced protection against peroxide killing. J Bacteriol 180:3988–3991
    [Google Scholar]
  21. Mongkolsuk S., Whangsuk W., Vattanaviboon P., Loprasert S., Fuangthong M. 2000; A Xanthomonas alkyl hydroperoxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes. J Bacteriol 182:6845–6849 [CrossRef]
    [Google Scholar]
  22. Mongkolsuk S., Panmanee W., Atichartpongkul S., Vattanaviboon P., Whangsuk W., Fuangthong M., Eiamphungporn W., Sukchawalit R., Utamapongchai S. 2002; The repressor for an organic peroxide-inducible operon is uniquely regulated at multiple levels. Mol Microbiol 44:793–802 [CrossRef]
    [Google Scholar]
  23. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. 2000; Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation ofkatB-ankB, ahpB, and ahpC-ahpF . J Bacteriol 182:4533–4544 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Seaver L. C., Imlay J. A. 2001; Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli . J Bacteriol 183:7182–7189 [CrossRef]
    [Google Scholar]
  26. Storz G., Altuvia S. 1994; OxyR regulon. Methods Enzymol 234:217–223
    [Google Scholar]
  27. Toledano M. B., Kullik I., Trinh F., Baird P. T., Schneider T. D., Storz G. 1994; Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909 [CrossRef]
    [Google Scholar]
  28. Tseng H. J., McEwan A. G., Apicella M. A., Jennings M. P. 2003; OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae . Infect Immun 71:550–556 [CrossRef]
    [Google Scholar]
  29. Vattanaviboon P., Mongkolsuk S. 2000; Expression analysis and characterization of the mutant of a growth-phase- and starvation-regulated monofunctional catalase gene from Xanthomonas campestris pv. phaseoli. Gene 241:259–265 [CrossRef]
    [Google Scholar]
  30. Vattanaviboon P., Sriprang R., Mongkolsuk S. 2001; Catalase has a novel protective role against electrophile killing of Xanthomonas. Microbiology 147:491–498
    [Google Scholar]
  31. Visick K. L., Ruby E. G. 1998; The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J Bacteriol 180:2087–2092
    [Google Scholar]
  32. Weisberg R. A., Gottesman M. E. 1999; Processive antitermination. J Bacteriol 181:359–367
    [Google Scholar]
  33. Wilson S. A., Wachira S. J., Norman R. A., Pearl L. H., Drew R. E. 1996; Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon. EMBO J 15:5907–5916
    [Google Scholar]
  34. Xu X. Q., Li L. P., Pan S. Q. 2001; Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction. Mol Microbiol 42:645–657
    [Google Scholar]
  35. Zheng M., Aslund F., Storz G. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27598-0
Loading
/content/journal/micro/10.1099/mic.0.27598-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error