1887

Abstract

is a Gram-negative rod that inhabits the aquatic environment and is the aetiological agent of cholera, a disease that is endemic in much of Southern Asia. The 57·3 kb pathogenicity island-2 (VPI-2) is confined predominantly to toxigenic O1 and O139 serogroup isolates and encodes 52 ORFs (VC1758 to VC1809), which include homologues of an integrase (VC1758), a restriction modification system, a sialic acid metabolism gene cluster (VC1773–VC1783), a neuraminidase (VC1784) and a gene cluster that shows homology to Mu phage. In this study, a 14·1 kb region of VPI-2 comprising ORFs VC1773 to VC1787 was identified by PCR and Southern blot analyses in all 17 isolates examined. The VPI-2 region in was inserted adjacent to a serine tRNA similar to VPI-2 in . In 11 of the 17 isolates examined, an additional 5·3 kb region encoding VC1758 and VC1804 to VC1809 was present adjacent to VC1787. The evolutionary history of VPI-2 was reconstructed by comparative analysis of the (VC1784) gene tree with the species gene tree, deduced from the housekeeping gene malate dehydrogenase (), among and isolates. Both gene trees showed an overall congruence; on both gene trees O1 and O139 serogroup isolates clustered together, whereas non-O1/non-O139 serogroup isolates formed separate divergent branches with similar clustering of strains within the branches. One exception was noted: on the gene tree, sequences formed a distinct divergent lineage from sequences; however, on the gene tree, clustered with non-O1/non-O139 isolates, suggesting horizontal transfer of this region between these species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27621-0
2005-01-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510311.html?itemId=/content/journal/micro/10.1099/mic.0.27621-0&mimeType=html&fmt=ahah

References

  1. Acuna M. T., Diaz G., Bolanos H., Barquero C., Sanchez O., Sanchez L. M., Mora G., Chaves A., Campos E. 1999; Sources of Vibrio mimicus contamination of turtle eggs. Appl Environ Microbiol 65:336–338
    [Google Scholar]
  2. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S., Ansaruzzaman M., Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341:704
    [Google Scholar]
  3. Berche P., Poyart C., Abachin E., Lelievre H., Vandepitte J., Dodin A., Fournier J. M. 1994; The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae . J Infect Dis 170:701–704 [CrossRef]
    [Google Scholar]
  4. Bickle T. A., Kruger D. H. 1993; Biology of DNA restriction. Microbiol Rev 57:434–450
    [Google Scholar]
  5. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. 1995; Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14:209–216
    [Google Scholar]
  6. Boyd E. F., Nelson K., Wang F.-S., Whittam T. S., Selander R. K. 1994; Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica . Proc Natl Acad Sci U S A 91:1280–1284 [CrossRef]
    [Google Scholar]
  7. Boyd E. F., Wang F.-S., Whittam T. S., Selander R. K. 1996; Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62:804–808
    [Google Scholar]
  8. Boyd E. F., Heilpern A. J., Waldor M. K. 2000a; Molecular analysis of a putative CTX π precursor and evidence for independent acquisition of distinct CTX π s by toxigenic Vibrio cholerae . J Bacteriol 182:5530–5538 [CrossRef]
    [Google Scholar]
  9. Boyd E. F., Moyer K. L., Shi L., Waldor M. K. 2000b; Infectious CTX π and the Vibrio pathogenicity island prophage in Vibrio mimicus : evidence for recent horizontal transfer between V. mimicus and V. cholerae . Infect Immun 68:1507–1513 [CrossRef]
    [Google Scholar]
  10. Byun R., Elbourne L. D., Lan R., Reeves P. R. 1999; Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124
    [Google Scholar]
  11. Campos E., Bolanos H., Acuna M. T., Diaz G., Matamoros M. C., Raventos H., Sanchez L. M., Sanchez O., Barquero C. 1996; Vibrio mimicus diarrhea following ingestion of raw turtle eggs. Appl Environ Microbiol 62:1141–1144
    [Google Scholar]
  12. Cholera Working Group. 1993; Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae non-O139 Bengal. Lancet 342:387–390 [CrossRef]
    [Google Scholar]
  13. Chowdhury M. A., Hill R. T., Colwell R. R. 1994; A gene for the enterotoxin zonula occludens toxin is present in Vibrio mimicus and Vibrio cholerae O139. FEMS Microbiol Lett 119:377–380 [CrossRef]
    [Google Scholar]
  14. Corfield T. 1990; Bacterial sialidases - roles in pathogenicity and nutrition. Glycobiology 2:509–521
    [Google Scholar]
  15. Davis B. M., Waldor M. K. 2000; CTX π contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A 97:8572–8577 [CrossRef]
    [Google Scholar]
  16. Davis B. M., Kimsey H. H., Kane A. V., Waldor M. K. 2002; A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J 21:4240–4249 [CrossRef]
    [Google Scholar]
  17. Davis B. R., Fanning G. R., Madden J. M., Steigerwalt A. G., Bradford H. B. Jr, Smith H. L. Jr, Brenner D. J. 1981; Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus . J Clin Microbiol 14:631–639
    [Google Scholar]
  18. Dziejman M., Balon E., Boyd D., Fraser C. M., Heidelberg J. F., Mekalanos J. J. 2002; Comparative genomic analysis of Vibrio cholerae : genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99:1556–1561 [CrossRef]
    [Google Scholar]
  19. Faruque S. M., Rahman M. M., Mekalanos J. J, Asadulghani, Nasirul Islam K. M. 1999; Lysogenic conversion of environmental Vibrio mimicus strains by CTXPhi. Infect Immun 67:5723–5729
    [Google Scholar]
  20. Faruque S. M., Asadulghani Kamruzzaman M., Nandi R. K., Ghosh A. N., Nair G. B., Mekalanos J. J., Sack D. A. 2002; RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTXphi. Infect Immun 70:163–170 [CrossRef]
    [Google Scholar]
  21. Galen J. E., Ketley J. M., Fasano A., Richardson S. H., Wasserman S. S., Kaper J. B. 1992; Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60:406–415
    [Google Scholar]
  22. Heidelberg J. F., Eisen J. A., Nelson W. C. 23 other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [CrossRef]
    [Google Scholar]
  23. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  24. Jermyn W. S., Boyd E. F. 2002; Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase ( nanH ) among toxigenic Vibrio cholerae isolates. Microbiology 148:3681–3693
    [Google Scholar]
  25. Jukes T. H., Cantor C. R. 1969 Evolution of Protein Molecules New York: Academic Press;
    [Google Scholar]
  26. Karaolis D. K., Johnson J. A., Bailey C. C., Boedeker E. C., Kaper J. B., Reeves P. R. 1998; A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95:3134–3139 [CrossRef]
    [Google Scholar]
  27. Kovach M. E., Shaffer M. D., Peterson K. M. 1996; A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142:2165–2174 [CrossRef]
    [Google Scholar]
  28. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  29. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  30. O'Shea Y. A., Reen F. J., Quirke A. M., Boyd E. F. 2004a; Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates based on comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 42:4657–4671 [CrossRef]
    [Google Scholar]
  31. O'Shea Y. A., Finnan S., Reen F. J., Morrissey J., O'Gara F., Boyd E. F. 2004b; The Vibrio seventh pandemic island-II is a 26·9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43·4 kb island in V. vulnificus . Microbiology 150:4053–4063 [CrossRef]
    [Google Scholar]
  32. Ramamurthy T., Albert M. J., Huq A., Colwell R. R., Takeda Y., Takeda T., Shimada T., Mandal B. K., Nair G. B. 1994; Vibrio mimicus with multiple toxin types isolated from human and environmental sources. J Med Microbiol 40:194–196 [CrossRef]
    [Google Scholar]
  33. Reen F. J., Boyd E. F. 2004; Molecular typing of epidemic and non-epidemic Vibrio cholerae isolates, and V. cholerae and V. mimicus isolates by PCR-Single Strand Conformation Polymorphism Analysis. J Appl Microbiol in press
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Shi L., Miyoshi S., Hiura M., Tomochika K., Shimada T., Shinoda S. 1998; Detection of genes encoding cholera toxin (CT), zonula occludens toxin (ZOT), accessory cholera enterotoxin (ACE) and heat-stable enterotoxin (ST) in Vibrio mimicus clinical strains. Microbiol Immunol 42:823–828 [CrossRef]
    [Google Scholar]
  36. Spira W. M., Fedorka-Cray P. J. 1983; Production of cholera toxin-like toxin by Vibrio mimicus and non-O1 Vibrio cholerae : batch culture conditions for optimum yields and isolation of hypertoxigenic lincomycin-resistant mutants. Infect Immun 42:501–509
    [Google Scholar]
  37. Spira W. M., Fedorka-Cray P. J. 1984; Purification of enterotoxins from Vibrio mimicus that appear to be identical to cholera toxin. Infect Immun 45:679–684
    [Google Scholar]
  38. Stroeher U. H., Parasivam G., Dredge B. K., Manning P. A. 1997; Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol 179:2740–2747
    [Google Scholar]
  39. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. 1987; Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84:2833–2837 [CrossRef]
    [Google Scholar]
  40. Vimr E. R., Kalivoda K. A., Deszo E. L., Steenbergen S. M. 2004; Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153 [CrossRef]
    [Google Scholar]
  41. Waldor M. K., Mekalanos J. J. 1994; Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis 170:278–283 [CrossRef]
    [Google Scholar]
  42. Waldor M. K., Mekalanos J. J. 1996; Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27621-0
Loading
/content/journal/micro/10.1099/mic.0.27621-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error