1887

Abstract

The biosynthetic gene cluster of the aminocoumarin antibiotic novobiocin contains two putative regulatory genes, i.e. and . The predicted gene product of shows a putative helix–turn–helix DNA-binding motif and shares sequence similarity with StrR, a well-studied pathway-specific transcriptional activator of streptomycin biosynthesis. Here functional proof is provided, by genetic and biochemical approaches, for the role of NovG as a positive regulator of novobiocin biosynthesis. The entire novobiocin cluster of the producer organism was expressed in the heterologous host M512, and additional strains were produced which lacked the gene within the heterologously expressed cluster. These Δ strains produced only 2 % of the novobiocin formed by the M512 strains carrying the intact novobiocin cluster. The production could be restored by introducing an intact copy of into the mutant. The presence of on a multicopy plasmid in the strain containing the intact cluster led to almost threefold overproduction of the antibiotic, suggesting that novobiocin biosynthesis is limited by the availability of NovG protein. Furthermore, purified N-terminal His-tagged NovG showed specific DNA-binding activity for the and the intergenic regions of the novobiocin and clorobiocin biosynthetic gene clusters, respectively. By comparing the DNA sequences of the fragments binding NovG, conserved inverted repeats were identified in both fragments, similar to those identified as the binding sites for StrR. The consensus sequence for the StrR and the putative NovG binding sites was GTTCRACTG(N)CRGTYGAAC. Therefore, NovG and StrR apparently belong to the same family of DNA-binding regulatory proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27669-0
2005-06-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511949.html?itemId=/content/journal/micro/10.1099/mic.0.27669-0&mimeType=html&fmt=ahah

References

  1. Antón N., Mendes M. V., Aparicio J. F, Martín J. F. 2004; Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis . J Bacteriol 186:2567–2575 [CrossRef]
    [Google Scholar]
  2. Arias P., Malpartida F, Fernández-Moreno M. A. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968
    [Google Scholar]
  3. Bentley S. D., Chater K. F. 40 other authors Cerdeño-Tárraga A. M. 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147 [CrossRef]
    [Google Scholar]
  4. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Biotechnology vol. 7Products of Secondary Metabolism pp 57–105 Edited by Kleinkauf H., von Döhren H. Weinheim: VCH;
    [Google Scholar]
  5. Chater K. F., Horinouchi S. 2003; Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15 [CrossRef]
    [Google Scholar]
  6. Chen H., Walsh C. T. 2001; Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem Biol 8:301–312 [CrossRef]
    [Google Scholar]
  7. Chiu H.-T., Hubbard B. K., Shah A. N., Eide J., Fredenburg R. A., Walsh C. T., Khosla C. 2001; Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci U S A 98:8548–8553 [CrossRef]
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  9. Eustáquio A. S., Gust B., Luft T., Li S.-M., Chater K. F., Heide L. 2003a; Clorobiocin biosynthesis in Streptomyces. Identification of the halogenase and generation of structural analogs. Chem Biol 10:279–288 [CrossRef]
    [Google Scholar]
  10. Eustáquio A. S., Luft T., Wang Z.-X., Gust B., Chater K. F., Li S.-M., Heide L. 2003b; Novobiocin biosynthesis: inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch Microbiol 180:25–32 [CrossRef]
    [Google Scholar]
  11. Eustáquio A. S., Gust B., Li S.-M., Pelzer S., Wohlleben W., Chater K. F., Heide L. 2004; Production of 8′-halogenated and 8′-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572 [CrossRef]
    [Google Scholar]
  12. Eustáquio A. S., Gust B., Galm U., Li S.-M., Chater K. F., Heide L. 2005; Heterologous expression of novobiocin and clorobiocin biosynthetic gene clusters. Appl Environ Microbiol 71: in press).
    [Google Scholar]
  13. Floriano B., Bibb M. 1996; afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production inStreptomyces coelicolor A3(2). Mol Microbiol 21:385–396 [CrossRef]
    [Google Scholar]
  14. Galm U., Dessoy M. A., Schmidt J., Wessjohann L. A., Heide L. 2004; In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic and synthetic approach. Chem Biol 11:173–183 [CrossRef]
    [Google Scholar]
  15. Gramajo H. C., Takano E., Bibb M. J. 1993; Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol 7:837–845 [CrossRef]
    [Google Scholar]
  16. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546 [CrossRef]
    [Google Scholar]
  17. Hojati Z., Milne C., Harvey B. 9 other authors 2002; Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor . Chem Biol 9:1175–1187 [CrossRef]
    [Google Scholar]
  18. Hussain H. A., Ritchie D. A. 1991; High frequency transformation of Streptomyces niveus protoplasts by plasmid DNA. J Appl Bacteriol 71:422–427 [CrossRef]
    [Google Scholar]
  19. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics, 2nd edn. Norwich: John Innes Foundation;
    [Google Scholar]
  20. Kominek L. A. 1972; Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother 1:123–134 [CrossRef]
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  22. Leskiw B. K., Bibb M. J., Chater K. F. 1991; The use of a rare codon specifically during development?. Mol Microbiol 5:2861–2867 [CrossRef]
    [Google Scholar]
  23. Li S.-M., Heide L. 2004; Functional analysis of biosynthetic genes of aminocoumarins and production of hybrid antibiotics. Curr Med Chem Anti-Infective Agents 3:279–295 [CrossRef]
    [Google Scholar]
  24. Lombó F., Braña A. F., Méndez C., Salas J. A. 1999; The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181:642–647
    [Google Scholar]
  25. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  26. Maxwell A. 1993; The interaction between coumarin drugs and DNA gyrase. Mol Microbiol 9:681–686 [CrossRef]
    [Google Scholar]
  27. Otten S. L., Ferguson J., Hutchinson C. R. 1995; Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177:1216–1224
    [Google Scholar]
  28. Otten S. L., Olano C., Hutchinson C. R. 2000; The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146:1457–1468
    [Google Scholar]
  29. Pabo C. O., Sauer R. T. 1992; Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095 [CrossRef]
    [Google Scholar]
  30. Pelzer S., Heckmann D., Recktenwald J., Huber P., Jung G., Wohlleben W, Süßmuth R. 1999; Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573
    [Google Scholar]
  31. Pérez-Llarena F. J., Liras P., Rodríguez-García A., Martín J. F. 1997; A regulatory gene (ccaR) required for cephamycin and clavulanic acid production inStreptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179:2053–2059
    [Google Scholar]
  32. Peschke U., Schmidt H., Zhang H. Z., Piepersberg W. 1995; Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16:1137–1156 [CrossRef]
    [Google Scholar]
  33. Pojer F., Li S.-M., Heide L. 2002; Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology 148:3901–3911
    [Google Scholar]
  34. Retzlaff L., Distler J. 1995; The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18:151–162 [CrossRef]
    [Google Scholar]
  35. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539
    [Google Scholar]
  36. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sekurova O. N., Brautaset T., Sletta H., Borgos S. E., Jakobsen M. O., Ellingsen T. E., Strom A. R., Valla S., Zotchev S. B. 2004; In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354 [CrossRef]
    [Google Scholar]
  38. Sheldon P. J., Busarow S. B., Hutchinson C. R. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460 [CrossRef]
    [Google Scholar]
  39. Sosio M., Stinchi S., Beltrametti F., Lazzarini A., Donadio S. 2003; The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549 [CrossRef]
    [Google Scholar]
  40. Sosio M., Kloosterman H., Bianchi A., de Vreugd P., Dijkhuizen L., Donadio S. 2004; Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102 [CrossRef]
    [Google Scholar]
  41. Steffensky M., Wang Z.-X., Li S.-M., Heide L, Mühlenweg A. 2000; Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222 [CrossRef]
    [Google Scholar]
  42. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R. 1992; Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius . J Bacteriol 174:144–154
    [Google Scholar]
  43. Thamm S., Distler J. 1997; Properties of C-terminal truncated derivatives of the activator, StrR, of the streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol Lett 149:265–272 [CrossRef]
    [Google Scholar]
  44. Thiara A. S., Cundliffe E. 1988; Cloning and characterization of a DNA gyrase B gene from Streptomyces sphaeroides that confers resistance to novobiocin. EMBO J 7:2255–2259
    [Google Scholar]
  45. Thiara A. S., Cundliffe E. 1989; Interplay of novobiocin-resistant and -sensitive DNA gyrase activities in self-protection of the novobiocin producer, Streptomyces sphaeroides . Gene 81:65–72 [CrossRef]
    [Google Scholar]
  46. Thorpe H. M., Wilson S. E., Smith M. C. 2000; Control of directionality in the site-specific recombination system of the Streptomyces phage πC31. Mol Microbiol 38:232–241 [CrossRef]
    [Google Scholar]
  47. Vara J., Lewandowska-Skarbek M., Wang Y. G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea(Streptomyces erythreus). J Bacteriol 171:5872–5881
    [Google Scholar]
  48. Wang Z.-X., Li S.-M., Heide L. 2000; Identification of the coumermycin A1 biosynthetic gene cluster ofStreptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44:3040–3048 [CrossRef]
    [Google Scholar]
  49. Wietzorrek A., Bibb M. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184 [CrossRef]
    [Google Scholar]
  50. Wilson D. J., Xue Y., Reynolds K. A., Sherman D. H. 2001; Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae . J Bacteriol 183:3468–3475 [CrossRef]
    [Google Scholar]
  51. Xu H., Heide L., Li S. M. 2004; New aminocoumarin antibiotics formed by a combined mutational and chemoenzymatic approach utilizing the carbamoyltransferase NovN. Chem Biol 11:655–662 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27669-0
Loading
/content/journal/micro/10.1099/mic.0.27669-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error