1887

Abstract

’ strain Fer1 is an extremely acidophilic archaeon involved in the genesis of acid mine drainage, and was isolated from copper-contaminated mine solutions at Iron Mountain, CA, USA. Here, the initial proteomic and molecular investigation of Cu resistance in this archaeon is presented. Analysis of Cu toxicity via batch growth experiments and inhibition of oxygen uptake in the presence of ferrous iron demonstrated that Fer1 can grow and respire in the presence of 20 g Cu l. The Fer1 copper resistance () loci [originally detected by Ettema, T. J. G., Huynen, M. A., de Vos, W. M. & van der Oost, J. , 170–173 (2003)] include genes encoding a putative transcriptional regulator (), a putative metal-binding chaperone () and a putative copper-transporting P-type ATPase (). Transcription analyses demonstrated that and are co-transcribed, and transcript levels were increased significantly in response to exposure to high levels of Cu, suggesting that the transport system is operating for copper efflux. Proteomic analysis of Fer1 cells exposed to Cu revealed the induction of stress proteins associated with protein folding and DNA repair (including RadA, thermosome and DnaK homologues), suggesting that ‘’ Fer1 uses multiple mechanisms for resistance to high levels of copper.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28076-0
2005-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512637.html?itemId=/content/journal/micro/10.1099/mic.0.28076-0&mimeType=html&fmt=ahah

References

  1. Apweiler R., Bairoch A., Wu C. H. 12 other authors 2004; uniprot: the Universal Protein Knowledgebase. Nucleic Acids Res 32:D115–D119 [CrossRef]
    [Google Scholar]
  2. Blum H., Beier H., Gross H. J. 1987; Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99 [CrossRef]
    [Google Scholar]
  3. Bond P. L., Druschel G. K., Banfield J. F. 2000a; Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971 [CrossRef]
    [Google Scholar]
  4. Bond P. L., Smriga S. P., Banfield J. F. 2000b; Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849 [CrossRef]
    [Google Scholar]
  5. Brinkman A. B., Dahlke I., Tuininga J. E. 7 other authors 2000; An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169 [CrossRef]
    [Google Scholar]
  6. Camakaris J., Voskoboinik I., Mercer J. F. 1999; Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232 [CrossRef]
    [Google Scholar]
  7. Cavet J. S., Borrelly G. P. M., Robinson N. J. 2003; Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181 [CrossRef]
    [Google Scholar]
  8. Cernila B., Cresnar B., Breskvar K. 1999; Induction of Hsp70 in the fungus Rhizopus nigricans . Biochem Biophys Res Commun 265:494–498 [CrossRef]
    [Google Scholar]
  9. Chan E., Weiss B. 1987; Endonuclease-IV of Escherichia coli is induced by paraquat. Proc Natl Acad Sci U S A 84:3189–3193 [CrossRef]
    [Google Scholar]
  10. Dew D. W., Muhlbauer R., van Buuren C. 1999; Bioleaching of copper sulphide concentrates with mesophiles and thermophiles. In Alta Copper 99 Brisbane, Australia:
    [Google Scholar]
  11. Dodd I. B., Egan J. B. 1990; Improved detection of Helix-Turn-Helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026 [CrossRef]
    [Google Scholar]
  12. Dopson M., Baker-Austin C., Koppineedi P. R., Bond P. L. 2003; Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970 [CrossRef]
    [Google Scholar]
  13. Dopson M., Baker-Austin C., Bond P. L. 2004a; First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships. J Microbiol Methods 58:297–302 [CrossRef]
    [Google Scholar]
  14. Dopson M., Baker-Austin C., Hind A., Bowman J. P., Bond P. L. 2004b; Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088 [CrossRef]
    [Google Scholar]
  15. Edwards K. J., Schrenk M. O., Hamers R., Banfield J. F. 1998; Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Miner 83:1444–1453
    [Google Scholar]
  16. Edwards K. J., Bond P. L., Gihring T. M., Banfield J. F. 2000; An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799 [CrossRef]
    [Google Scholar]
  17. Ettema T. J. G., Huynen M. A., de Vos W. M., van der Oost J. 2003; trash: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28:170–173 [CrossRef]
    [Google Scholar]
  18. Ferianc P., Farewell A., Nystrom T. 1998; The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050 [CrossRef]
    [Google Scholar]
  19. Fink A. L. 1999; Chaperone-mediated protein folding. Physiol Rev 79:425–449
    [Google Scholar]
  20. Gaetke L. M., Chow C. K. 2003; Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163 [CrossRef]
    [Google Scholar]
  21. Garcia S., Prado M., Degano R., Dominguez A. 2002; A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in Yarrowia lipolytica . J Biol Chem 277:37359–37368 [CrossRef]
    [Google Scholar]
  22. Ghosh S., Mahapatra N. R., Banerjee P. C. 1997; Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli . Appl Environ Microbiol 63:4523–4527
    [Google Scholar]
  23. Hallberg K. B., Dopson M., Lindström E. B. 1996; Arsenic toxicity is not due to a direct effect on the oxidation of reduced sulfur compounds by Thiobacillus caldus . FEMS Microbiol Lett 145:409–414 [CrossRef]
    [Google Scholar]
  24. Halliwell B., Gutteridge J. M. C. 1984; Oxygen-toxicity, oxygen radicals, transition-metals and disease. Biochem J 219:1–14
    [Google Scholar]
  25. Hartl F., Hayer-Hartl M. 2002; Protein folding – molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858 [CrossRef]
    [Google Scholar]
  26. Harvey P. I., Crundwell F. K. 1996; The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potential. Min Engin 9:1059–1068 [CrossRef]
    [Google Scholar]
  27. Hesketh A. R., Chandra G., Shaw A. D., Rowland J. J., Kell D. B., Bibb M. J., Chater K. F. 2002; Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor . Mol Microbiol 46:917–932 [CrossRef]
    [Google Scholar]
  28. Kammenga J. E., Arts M. S. J., Oude-Breuil W. J. M. 1998; Hsp60 as a potential biomarker of toxic stress in the nematode Plectus acuminatus . Arch Environ Contam Toxicol 34:253–258 [CrossRef]
    [Google Scholar]
  29. Kawanishi S., Inoe S., Yamamoto K. 1989; Hydroxyl radical and singlet oxygen production and DNA damage induced by carcinogenic metal compounds and hydrogen peroxide. Biol Trace Elem Res 21:367–372 [CrossRef]
    [Google Scholar]
  30. Kelley L. A., MacCallum R. M., Sternberg M. J. E. 2000; Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520
    [Google Scholar]
  31. Krokan H. E., Standal R., Slupphaug G. 1997; DNA glycosylases in the base excision repair of DNA. Biochem J 325:1–16
    [Google Scholar]
  32. Macario A. J. L., Lange M., Ahring B. K., Conway de Macario E. 1999; Stress genes and proteins in the Archaea. Microbiol Mol Biol Rev 63:923–967
    [Google Scholar]
  33. Mahapatra N. R., Banerjee P. C. 1996; Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains. Lett Appl Microbiol 23:393–397 [CrossRef]
    [Google Scholar]
  34. Marrero J., Gonzalez L. J., Sanchez A., Ayala M., Paz-Lago D., Gonzalez W., Fallarero A., Castellanos-Serra L., Coto O. 2004; Effect of high concentration of Co (II) on Enterobacter liquefaciens strain C-1: a bacterium highly resistant to heavy metals with an unknown genome. Proteomics 4:1265–1279 [CrossRef]
    [Google Scholar]
  35. McCarty J. S., Walker G. C. 1991; DnaK as a thermometer: Threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci U S A 88:9513–9517 [CrossRef]
    [Google Scholar]
  36. Miller K. W., Risanico S. S., Risatti J. B. 1992; Differential tolerance of Sulfolobus strains to transition-metals. FEMS Microbiol Lett 93:69–73 [CrossRef]
    [Google Scholar]
  37. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750 [CrossRef]
    [Google Scholar]
  38. Noel-Georis I., Vallaeys T., Chauvaux R., Monchy S., Falmagne R., Mergeay M., Wattiez R. 2004; Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179 [CrossRef]
    [Google Scholar]
  39. Nordstrom D. K., Alpers C. N. 1999; Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci U S A 96:3455–3462 [CrossRef]
    [Google Scholar]
  40. Nordstrom D. K., Southam G. 1997; Geomicrobiology of sulfide mineral oxidation. In Geomicrobiology: Interactions Between Microbes and Minerals , vol. 35 pp 361–390 Edited by Banfield J. F., Nealson K. H. Washington, DC: Mineralogical Society of America;
    [Google Scholar]
  41. Pradet-Balade B., Boulme F., Beug H., Mullner E. W., Garcia-Sanz J. A. 2001; Translation control: bridging the gap between genomics and proteomics?. Trends Biochem Sci 26:225–229 [CrossRef]
    [Google Scholar]
  42. Rensing C., Grass G. 2003; Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213 [CrossRef]
    [Google Scholar]
  43. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656 [CrossRef]
    [Google Scholar]
  44. Roccheri M. C., Agnello M., Bonaventura R., Matranga R. 2004; Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–87 [CrossRef]
    [Google Scholar]
  45. Sawers G., Böck A. 1989; Novel transcriptional control of the pyruvate formate-lyase gene – upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498
    [Google Scholar]
  46. Soares E. V., Hebbelinck K., Soares H. 2003; Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae : a comparative study. Can J Microbiol 49:336–343 [CrossRef]
    [Google Scholar]
  47. Solioz M., Stoyanov J. V. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195 [CrossRef]
    [Google Scholar]
  48. Teitzel G. M., Parsek M. R. 2003; Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa . Appl Environ Microbiol 69:2313–2320 [CrossRef]
    [Google Scholar]
  49. Tsivkovskii R., Efremov R. G., Lutsenko S. 2003; The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem 278:13302–13308 [CrossRef]
    [Google Scholar]
  50. Tusnady G. E., Simon I. 2001; The hmmtop transmembrane topology prediction server. Bioinformatics 17:849–850 [CrossRef]
    [Google Scholar]
  51. Tyson G. C. J., Hugenholtz P., Allen E. E., Ram R. J., Richardson P. M., Solovyev V. V., Rubin E. M., Rokhsar D. S., Banfield J. F. 2004; Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:25–26 [CrossRef]
    [Google Scholar]
  52. van de Vossenberg J., Driessen A. J. M., Konings W. N. 1998; The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170 [CrossRef]
    [Google Scholar]
  53. Vido K., Spector D., Lagniel G., Lopez S., Toledano M. B., Labarre J. 2001; A proteome analysis of the cadmium response in Saccharomyces cerevisiae . J Biol Chem 276:8469–8474 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28076-0
Loading
/content/journal/micro/10.1099/mic.0.28076-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error