1887

Abstract

Experiments were done to define the nature of the xylan-derived induction signal for xylanase activity, and evaluate which xylanase genes among the three known ones (, and ) are induced by the presence of xylan in B4. During the later stages of exponential growth on glucose, addition of 0·05 % water-soluble xylan (WS-X) stimulated xylanase formation within 30 min. Xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, arabinose and glucuronic acid all failed to induce the xylanase activity. An acid-ethanol-soluble fraction of WS-X (approximate degree of polymerization 30) enhanced the activity significantly, whereas the acid-ethanol-insoluble fraction had no effect, unless first digested by the cloned XynC xylanase. These results indicate that medium- to large-sized xylo-oligosaccharides are responsible for induction. The transcription of all three known xylanase genes from was upregulated coordinately by addition of WS-X. There have been relatively few investigations into the regulation of xylanase activity in bacteria, and it appears to be unique that medium- to large-sized xylo-oligosaccharides are responsible for induction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28270-0
2005-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/4121.html?itemId=/content/journal/micro/10.1099/mic.0.28270-0&mimeType=html&fmt=ahah

References

  1. Biely P., Kratky Z., Vrsanska M., Urmanicova D. 1980; Induction and inducers of endo 1,4- beta-xylanase in the yeast Cryptococcus albidus . Eur J Biochem 108:323–329 [CrossRef]
    [Google Scholar]
  2. Cotta M. A. 1993; Utilization of xylooligosaccharides by selected ruminal bacteria. Appl Environ Microbiol 59:3557–3563
    [Google Scholar]
  3. Cotta M. A., Wheeler M. B., Whitehead T. R. 1994; Cyclic AMP in ruminal and other anaerobic bacteria. FEMS Microbiol Lett 124:355–360 [CrossRef]
    [Google Scholar]
  4. Fields M. W., Russell J. B. 2001; The glucomannokinase of Prevotella bryantii B14 and its potential role in regulating β -glucanase expression. Microbiology 147:1035–1043
    [Google Scholar]
  5. Flint H. J., McPherson C. A., Martin J. C. 1991; Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J Gen Microbiol 137:123–129 [CrossRef]
    [Google Scholar]
  6. Flint H. J., Whitehead T. R., Martin J. C., Gasparic A. 1997; Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola . Biochem Biophys Acta 1337161–165
    [Google Scholar]
  7. Flint H. J., Aurilia V., Kirby J., Miyazaki K., Rincon-Torres M. T., McCrae S. I., Martin J. C. 1998; Organization of plant cell wall degrading enzymes in the ruminal anaerobic bacteria Ruminococcus flavefaciens and Prevotella bryantii . In Genetics, Biochemistry and Ecology of Cellulose Degradation pp 511–520 Edited by Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T. Tokyo: Uni Publishers;
    [Google Scholar]
  8. Garcia-Campayo V., McCrae V., Zhang J.-X., Flint H. J., Wood T. M. 1993; Mode of action, kinetic properties and physicochemical characterisation of two different domains of a bifunctional (1-4)- β -d-xylanase from Ruminococcus flavefaciens expressed separately in Escherichia coli . Biochem J 269:235–243
    [Google Scholar]
  9. Gardner R. G., Wells J. E., Russell J. B., Wilson D. B. 1995; The cellular location of the Prevotella ruminicola β -1,4-d-endoglucanase and its occurrence in other strains of ruminal bacteria. Appl Environ Microbiol 61:3288–3292
    [Google Scholar]
  10. Gasparic A., Martin J. C., Daniel A. S., Flint H. J. 1995; A xylan hydrolase gene cluster in Prevotella ruminicola B14: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and β -(1,4)-xylosidase activities. Appl Environ Microbiol 61:2958–2964
    [Google Scholar]
  11. Gouka R. J., Hessing J. G., Punt P. J., Stam H., Musters W., Van den Hondel C. A. 1996; An expression system based on the promoter region of the Aspergillus awamori 1,4-beta-endoxylanase A gene. Appl Microbiol Biotechnol 46:28–35 [CrossRef]
    [Google Scholar]
  12. Henkin T. M. 1996; The role of the CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis . FEMS Microbiol Lett 135:9–15 [CrossRef]
    [Google Scholar]
  13. Heuck C. J., Kraus A., Schmiedel D., Hillen W. 1995; Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium . Mol Microbiol 16:855–864 [CrossRef]
    [Google Scholar]
  14. Kristensen H. H., Valentin-Hansen P., Sogaard-Andersen L. 1997; Design of CytR regulated, cAMP-CRP dependent class II promoters in Escherichia coli : RNA polymerase-promoter interactions modulate the efficiency of CytR repression . J Mol Biol 266:866–876 [CrossRef]
    [Google Scholar]
  15. Mach R. L., Strauss J., Zeilinger S., Schindler M. C., Kubicek P. 1996; Carbon catabolite repression of xylanase I ( xyn1 ) gene expression in Trichoderma reesei . Mol Microbiol 21:1273–1281 [CrossRef]
    [Google Scholar]
  16. Martin S. A., Russell J. B. 1986; Phosphoenolpyruvate-dependent phosphorylation of hexoses by rumen bacteria: evidence for the phosphotransferase system of transport. Appl Environ Microbiol 52:1348–1352
    [Google Scholar]
  17. Miyazaki K., Martin J. C., Marinsek-Logar R., Flint H. J. 1997; Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii B14. Anaerobe 3:373–381 [CrossRef]
    [Google Scholar]
  18. Miyazaki K., Miyamoto H., Mercer D. K., Hirase T., Martin J. C., Kojima Y., Flint H. J. 2003; Involvement of the two component regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J Bacteriol 185:2219–2226 [CrossRef]
    [Google Scholar]
  19. Monedero V., Gosalbes M. J., Perez-Martinez G. 1997; Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179:6657–6664
    [Google Scholar]
  20. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380
    [Google Scholar]
  21. Orejas M., MacCabe A. P., Perez Gonzalez J. A., Kumar S., Ramon D. 1999; Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177–184 [CrossRef]
    [Google Scholar]
  22. Pedersen H., Dall J., Dandanell G., Valentin-Hansen P. 1995; Gene-regulatory modules in Escherichia coli : nucleoprotein complexes formed by cAMP-CRP and CytR at the nupG promoter. Mol Microbiol 17:843–853 [CrossRef]
    [Google Scholar]
  23. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenol-pyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  24. Schneider W. C. 1957; Determination of nucleic acids in tissues by pentose analysis. Methods Enzymol 3:680–684
    [Google Scholar]
  25. Zeilinger S., Mach R. L., Schindler M., Herzog P., Kubicek C. P. 1996; Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei . J Biol Chem 271:25624–25629 [CrossRef]
    [Google Scholar]
  26. Zhang J.-X., Flint H. J. 1992; A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine rich sequence. Mol Microbiol 6:1013–1023 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28270-0
Loading
/content/journal/micro/10.1099/mic.0.28270-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error