1887

Abstract

In this paper, the construction and evaluation of a chromosomal expression platform (CEP), which allows controlled gene expression following ectopic integration into the chromosome of , is described. CEP is based on the well-studied maltosaccharide-inducible system. To facilitate integration at CEP, a plasmid, pCEP, capable of replication in , but not in , was assembled. This plasmid contains an expression/selection cassette flanked on each side by more than 2 kb of pneumococcal DNA. The cassette comprises a maltose-inducible promoter, P, separated from a kanamycin-resistance gene by I and HI cloning sites. Clones harbouring the gene of interest integrated at CEP under the control of P can be obtained through direct transformation of an recipient with ligation products between that gene and I/HI-digested pCEP DNA, followed by selection for kanamycin-resistant transformants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28433-0
2006-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/343.html?itemId=/content/journal/micro/10.1099/mic.0.28433-0&mimeType=html&fmt=ahah

References

  1. Alloing G, Trombe M. C, Claverys J. P. 1990; The ami locus of the Gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of Gram-negative bacteria. Mol Microbiol 4:633–644 [CrossRef]
    [Google Scholar]
  2. Balganesh T. S, Lacks S. A. 1985; Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae : cloning and expression of the hexA gene. J Bacteriol 162:979–984
    [Google Scholar]
  3. Bergé M, Moscoso M, Prudhomme M, Martin B., Claverys J. P. 2002; Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae . Mol Microbiol 45:411–421 [CrossRef]
    [Google Scholar]
  4. Chan P. F, O'Dwyer K. M, Palmer L. M. 8 other authors 2003; Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae . J Bacteriol 185:2051–2058 [CrossRef]
    [Google Scholar]
  5. Dagkessamanskaia A, Moscoso M, Overweg K, Reuter M, Martin B, Wells J, Claverys J. P, Hénard V, Guiral S. 2004; Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae : competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086 [CrossRef]
    [Google Scholar]
  6. de Saizieu A, Gardes C, Flint N, Wagner C, Kamber M, Mitchell T. J, Keck W, Amrein K. E, Lange R. 2000; Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 182:4696–4703 [CrossRef]
    [Google Scholar]
  7. Díaz A, Lacks S. A, López P. 1992; The 5′ to 3′ exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae . Mol Microbiol 6:3009–3019 [CrossRef]
    [Google Scholar]
  8. Guiral S, Martin B, Claverys J. P, Hénard V, Granadel C. 2006; Inhibition of competence development in Streptococcus pneumoniae by increased basal-level expression of the ComDE two-component regulatory system. Microbiology 152:323–331 [CrossRef]
    [Google Scholar]
  9. Hoskins J, Alborn W. E., Jr, Arnold J. 40 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [CrossRef]
    [Google Scholar]
  10. Kausmally L, Johnsborg O, Lunde M, Knutsen E, Håvarstein L. S. 2005; Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol 187:4338–4345 [CrossRef]
    [Google Scholar]
  11. Kong L, Siranosian K. J, Grossman A. D, Dubnau D. 1993; Sequence and properties of mecA , a negative regulator of genetic competence in Bacillus subtilis . Mol Microbiol 9:365–373 [CrossRef]
    [Google Scholar]
  12. Lacks S. A. 1968; Genetic regulation of maltosaccharide utilization in pneumococcus. Genetics 60:685–706
    [Google Scholar]
  13. Luo P, Li H, Morrison D. A. 2003; ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae . Mol Microbiol 50:623–633 [CrossRef]
    [Google Scholar]
  14. Mannarelli B. M, Lacks S. A. 1984; Ectopic integration of chromosomal genes in Streptococcus pneumoniae . J Bacteriol 160:867–873
    [Google Scholar]
  15. Martin B, Prats H, Claverys J. P. 1985; Cloning of the hexA mismatch repair of Streptococcus pneumoniae and identification of the product. Gene 34:293–303 [CrossRef]
    [Google Scholar]
  16. Martin B, Alloing G, Boucraut C, Claverys J. P. 1989; The difficulty of cloning Streptococcus pneumoniae mal and ami loci in Escherichia coli : toxicity of malX and amiA gene products. Gene 80:227–237 [CrossRef]
    [Google Scholar]
  17. Martin B, Prudhomme M, Alloing G, Granadel C, Claverys J. P. 2000; Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae . Mol Microbiol 38:867–878 [CrossRef]
    [Google Scholar]
  18. Méjean V, Claverys J. P, Vasseghi H, Sicard A. M. 1981; Rapid cloning of specific DNA fragments of Streptococcus pneumoniae by vector integration into the chromosome followed by endonucleolytic excision. Gene 15:289–293 [CrossRef]
    [Google Scholar]
  19. Mortier-Barrière I, de Saizieu A, Claverys J. P, Martin B. 1998; Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae . Mol Microbiol 27:159–170 [CrossRef]
    [Google Scholar]
  20. Nieto C, Espinosa M, Puyet A. 1997; The maltose/maltodextrin regulon of Streptococcus pneumoniae . J Biol Chem 272:30860–30865 [CrossRef]
    [Google Scholar]
  21. Nieto C, Fernández de Palencia P, López P, Espinosa M. 2000; Construction of a tightly regulated plasmid vector for Streptococcus pneumoniae : controlled expression of the green fluorescent protein. Plasmid 43:205–213 [CrossRef]
    [Google Scholar]
  22. Peterson S, Sung C. K, Cline R. 13 other authors 2004; Identification of competence pheromone responsive genes in Streptococcus pneumoniae . Mol Microbiol 51:1051–1070 [CrossRef]
    [Google Scholar]
  23. Pichoff S, Vollrath B, Touriol C, Bouché J. P. 1995; Deletion analysis of gene minE which encodes the topological specificity factor of cell division in Escherichia coli . Mol Microbiol 18:321–329 [CrossRef]
    [Google Scholar]
  24. Pozzi G, Guild W. R. 1985; Modes of integration of heterologous plasmid DNA into the chromosome of Streptococcus pneumoniae . J Bacteriol 161:909–912
    [Google Scholar]
  25. Prats H, Martin B, Claverys J. P. 1985; The hexB mismatch repair gene of Streptococcus pneumoniae : characterization, cloning and identification of the product. Mol Gen Genet 200:482–489 [CrossRef]
    [Google Scholar]
  26. Prudhomme M, Claverys J. P. 2006; There will be a light: the use of luc transcriptional fusions in living pneumococcal cells. In The Molecular Biology of Streptococci Edited by Hakenbeck R., Chhatwal G. S. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  27. Puyet A, Ibáñez A. M, Espinosa M. 1993; Characterization of the Streptococcus pneumoniae maltosaccharide regulator MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features. J Biol Chem 268:25402–25408
    [Google Scholar]
  28. Robertson G. T, Ng W. L, Foley J, Gilmour R, Winkler M. E. 2002; Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184:3508–3520 [CrossRef]
    [Google Scholar]
  29. Robertson G. T, Ng W. L, Gilmour R, Winkler M. E. 2003; Essentiality of clpX , but not clpP , clpL , clpC , or clpE , in Streptococcus pneumoniae R6. J Bacteriol 185:2961–2966 [CrossRef]
    [Google Scholar]
  30. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Stassi D. L, Dunn J. J, Lacks S. A. 1982; Nucleotide sequence of DNA controlling expression of genes for maltosaccharide utilization in Streptococcus pneumoniae . Gene 20:359–366 [CrossRef]
    [Google Scholar]
  32. Stieger M, Wohlgensinger B, Kamber M, Lutz R, Keck W. 1999; Integrational plasmids for the tetracycline-regulated expression of genes in Streptococcus pneumoniae . Gene 226:243–251 [CrossRef]
    [Google Scholar]
  33. Sung C. K, Li H, Claverys J. P, Morrison D. A. 2001; An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae . Appl Environ Microbiol 67:5190–5196 [CrossRef]
    [Google Scholar]
  34. Vasseghi H, Claverys J. P. 1983; Amplification of a chimeric plasmid carrying an erythromycin-resistance determinant introduced into the genome of Streptococcus pneumoniae . Gene 21:285–292 [CrossRef]
    [Google Scholar]
  35. Vasseghi H, Claverys J. P, Sicard A. M. 1981; Mechanism of integrating foreign DNA during transformation of Streptococcus pneumoniae. In Transformation-1980 pp  137–154 Edited by Polsinelli M., Mazza G. Oxford: Cotswold Press;
    [Google Scholar]
  36. Zähner D, Hakenbeck R. 2000; The Streptococcus pneumoniae beta-galactosidase is a surface protein. J Bacteriol 182:5919–5921 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28433-0
Loading
/content/journal/micro/10.1099/mic.0.28433-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error