1887

Abstract

In past years, several useful genetic tools have been developed to study the molecular biology of . In order to extend the existing spectrum of tools, advantage was taken of the toolbox originally developed for the closely related bacterium , which was adapted for the manipulation of . The modified tools are as follows. (i) An improved nisin-inducible (over)expression system (NICE). The genes, encoding a two-component system essential for transcriptional activation in response to nisin, were integrated into the locus of D39. In this strain, D39, addition of nisin resulted in the overexpression of several genes placed under the control of the nisin-inducible promoter, while no detectable expression was observed in the absence of nisin. (ii) A reporter system. Using strain D39, which lacks endogenous -galactosidase activity, the usefulness of the reporter vector pORI13 for the generation of chromosomal transcriptional fusions was demonstrated. In addition, the gene, necessary for the replication of pORI13, was introduced into the locus, thereby generating a background for plasmid-based promoter expression studies. (iii) A simplified chemically defined medium, which supports growth of all sequenced strains to a level comparable to that in complex medium. (iv) A system for the introduction of unmarked deletions and mutations into the chromosome, which is independent of the genotype of the target strain. Most of these systems were successfully applied in strains R6 and TIGR4 as well. In addition, the tools offer several improvements and advantages compared to existing ones. Thus, the molecular toolbox for has been successfully extended.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28521-0
2006-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/351.html?itemId=/content/journal/micro/10.1099/mic.0.28521-0&mimeType=html&fmt=ahah

References

  1. Acebo P, Nieto C, Corrales M. A, Espinosa M, Lopez P. 2000; Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein. Microbiology 146:1267–1273
    [Google Scholar]
  2. Adams M. H, Roe A. S. 1945; A partially defined medium for cultivation of Pneumococcus. J Bacteriol 49:401–409
    [Google Scholar]
  3. Avery O. T, Macleod C. M, McCarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. Mol Med 1:137–158
    [Google Scholar]
  4. Bartilson M, Marra A, Christine J, Asundi J. S, Schneider W. P, Hromockyj A. E. 2001; Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39:126–135 [CrossRef]
    [Google Scholar]
  5. Bogaert D, Hermans P. W, de Groot R. 2004; Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154 [CrossRef]
    [Google Scholar]
  6. Chan P. F, O'Dwyer K. M, Palmer L. M. 8 other authors 2003; Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae . J Bacteriol 185:2051–2058 [CrossRef]
    [Google Scholar]
  7. Chomczynski P, Qasba P. K. 1984; Alkaline transfer of DNA to plastic membrane. Biochem Biophys Res Commun 122:340–344 [CrossRef]
    [Google Scholar]
  8. Claverys J. P, Dintilhac A, Pestova E. V, Martin B, Morrison D. A. 1995; Construction and evaluation of new drug-resistance cassettes for gene disruption mutagenesis in Streptococcus pneumoniae , using an ami test platform. Gene 164:123–128 [CrossRef]
    [Google Scholar]
  9. de Ruyter P. G, Kuipers O. P, Beerthuyzen M. M, van Alen-Boerrigter I, de Vos W. M. 1996a; Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis . J Bacteriol 178:3434–3439
    [Google Scholar]
  10. de Ruyter P. G, Kuipers O. P, de Vos W. M. 1996b; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  11. Eichenbaum Z, Federle M. J, Marra D, Kuipers O. P, Kleerebezem M, Scott J. R, de Vos W. M. 1998; Use of the lactococcal nisA promoter to regulate gene expression in Gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763–2769
    [Google Scholar]
  12. Fisher S. H, Sonenshein A. L. 1984; Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression. J Bacteriol 157:612–621
    [Google Scholar]
  13. Hancock R. E. 2005; Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 5:209–218 [CrossRef]
    [Google Scholar]
  14. Holo H, Nes I. F. 1995; Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199
    [Google Scholar]
  15. Hoskins J, Alborn W. E., Jr, Arnold J. 40 other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 [CrossRef]
    [Google Scholar]
  16. Iannelli F, Pozzi G. 2004; Method for introducing specific and unmarked mutations into the chromosome of Streptococcus pneumoniae . Mol Biotechnol 26:81–86 [CrossRef]
    [Google Scholar]
  17. Israelsen H, Madsen S. M, Vrang A, Hansen E. B, Johansen E. 1995; Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn 917 - lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547
    [Google Scholar]
  18. Johansen E, Kibenich A. 1992; Isolation and characterization of IS 1165 , an insertion sequence of Leuconostoc mesenteroides subsp. cremoris and other lactic acid bacteria. Plasmid 27:200–206 [CrossRef]
    [Google Scholar]
  19. Kleerebezem M, Beerthuyzen M. M, Vaughan E. E, Kuipers O. P, de Vos W. M. 1997; Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus , Leuconostoc , and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584
    [Google Scholar]
  20. Kok J, Venema G, van der Vossen J. M. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli . Appl Environ Microbiol 48:726–731
    [Google Scholar]
  21. Kramer N. E. 2005 Nisin-resistance in Gram-positive bacteria PhD thesis University of Groningen; The Netherlands:
    [Google Scholar]
  22. Kuipers O. P, Beerthuyzen M. M, Luesink E. J, de Ruyter P. G, de Vos W. M. 1995; Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304 [CrossRef]
    [Google Scholar]
  23. Kuipers O. P, Ruyter P. G, Kleerebezem M, Vos W. M. 1998; Quorum sensing controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 [CrossRef]
    [Google Scholar]
  24. Lee M. S, Seok C, Morrison D. A. 1998; Insertion-duplication mutagenesis in Streptococcus pneumoniae : targeting fragment length is a critical parameter in use as a random insertion tool. Appl Environ Microbiol 64:4796–4802
    [Google Scholar]
  25. Leenhouts K. J, Kok J, Venema G. 1991; Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl Environ Microbiol 57:2562–2567
    [Google Scholar]
  26. Leenhouts K, Buist G, Bolhuis A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J, ten Berge A. 1996; A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224 [CrossRef]
    [Google Scholar]
  27. Leenhouts K, Bolhuis A, Venema G, Kok J. 1998a; Construction of a food-grade multiple-copy integration system for Lactococcus lactis . Appl Microbiol Biotechnol 49:417–423 [CrossRef]
    [Google Scholar]
  28. Leenhouts K, Venema G, Kok J. 1998b; A lactococcal pWV01 based integration toolbox for bacteria. Methods Cell Sci 20:35–50 [CrossRef]
    [Google Scholar]
  29. Luo P, Li H, Morrison D. A. 2004; Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae . Mol Microbiol 54:172–183 [CrossRef]
    [Google Scholar]
  30. Marra A, Asundi J, Bartilson M. 7 other authors 2002; Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect Immun 70:1422–1433 [CrossRef]
    [Google Scholar]
  31. Mierau I, Kleerebezem M. 2005; 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis . Appl Microbiol Biotechnol 68:705–717 [CrossRef]
    [Google Scholar]
  32. Ng W. L, Kazmierczak K. M, Winkler M. E. 2004; Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175 [CrossRef]
    [Google Scholar]
  33. Pestova E. V, Morrison D. A. 1998; Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J Bacteriol 180:2701–2710
    [Google Scholar]
  34. Poolman B, Konings W. N. 1988; Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707
    [Google Scholar]
  35. Pozzi G, Masala L, Iannelli F, Manganelli R, Havarstein L. S, Piccoli L, Simon D, Morrison D. A. 1996; Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae : two allelic variants of the peptide pheromone. J Bacteriol 178:6087–6090
    [Google Scholar]
  36. Rollema H. S, Kuipers O. P, Both P, Siezen R. J, de Vos W. M. 1995; Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol 61:2873–2878
    [Google Scholar]
  37. Sanders J. W, Venema G, Kok J, Leenhouts K. 1998; Identification of a sodium chloride-regulated promoter in Lactcoccus lactis by single-copy chromosomal fusion with a reporter gene. Mol Gen Genet 257:681–685 [CrossRef]
    [Google Scholar]
  38. Standish A. J, Stroeher U. H, Paton J. C. 2005; The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae . Proc Natl Acad Sci U S A 102:7701–7706 [CrossRef]
    [Google Scholar]
  39. Sung C. K, Li H, Claverys J. P, Morrison D. A. 2001; An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae . Appl Environ Microbiol 67:5190–5196 [CrossRef]
    [Google Scholar]
  40. Terzaghi B. E, Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 29:807–813
    [Google Scholar]
  41. Tettelin H, Nelson K. E, Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [CrossRef]
    [Google Scholar]
  42. van de Rijn I., Kessler R. E. 1980; Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 27:444–448
    [Google Scholar]
  43. Willett N. P, Morse G. E. 1966; Long-chain fatty acid inhibition of growth of Streptococcus agalactiae in a chemically defined medium. J Bacteriol 91:2245–2250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28521-0
Loading
/content/journal/micro/10.1099/mic.0.28521-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error