1887

Abstract

In , as in many Gram-positive bacteria, the cell division gene is located at the beginning of the cluster, which comprises cell division- and cell wall-related genes. Transcriptional analysis of the cluster revealed that is transcribed as part of a polycistronic mRNA, which includes at least , , , and , from a promoter that is located upstream of . appears also to be expressed from a minor promoter that is located in the intergenic region. It is an essential gene in , and a reduced expression of leads to the formation of larger and filamentous cells. A translational GFP-FtsI fusion protein was found to be functional and localized to the mid-cell of a growing bacterium, providing evidence of its role in cell division in . This study involving proteomic analysis (using 2D SDS-PAGE) of a strain that has partially depleted levels of FtsI reveals that at least 20 different proteins were overexpressed in the organism. Eight of these overexpressed proteins, which include DivIVA, were identified by MALDI-TOF. Overexpression of DivIVA was confirmed by Western blotting using anti-DivIVA antibodies, and also by fluorescence microscopy analysis of a RESF1 strain expressing a chromosomal copy of a transcriptional fusion. Overexpression of DivIVA was not observed when FtsI was inhibited by cephalexin treatment or by partial depletion of FtsZ.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28773-0
2006-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2491.html?itemId=/content/journal/micro/10.1099/mic.0.28773-0&mimeType=html&fmt=ahah

References

  1. Adham S. A, Honrubia P, Diaz M, Fernandez-Abalos J. M, Santamaria R. I, Gil J. A. 2001; Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97 [CrossRef]
    [Google Scholar]
  2. Adham S. A, Rodriguez S, Ramos A, Santamaria R. I, Gil J. A. 2003; Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 180:53–59 [CrossRef]
    [Google Scholar]
  3. Begg K. J, Takasuga A, Edwards D. H, Dewar S. J, Spratt B. G, Adachi H, Ohta T, Matsuzawa H, Donachie W. D. 1990; The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J Bacteriol 172:6697–6703
    [Google Scholar]
  4. Begg K. J, Tomoyasu T, Donachie W. D, Khattar M, Niki H, Yamanaka K, Hiraga S, Ogura T. 1992; Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J Bacteriol 174:2416–2417
    [Google Scholar]
  5. Bierman M, Logan R, O'Brien K, Seno E. T, Rao R. N, Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  6. Botta G. A, Park J. T. 1981; Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol 145:333–340
    [Google Scholar]
  7. Cadenas R. F, Martin J. F, Gil J. A. 1991; Construction and characterization of promoter-probe vectors for corynebacteria using the kanamycin-resistance reporter gene. Gene 98:117–121 [CrossRef]
    [Google Scholar]
  8. Cha J. H, Stewart G. C. 1997; The divIVA minicell locus of Bacillus subtilis . J Bacteriol 179:1671–1683
    [Google Scholar]
  9. Daniel R. A, Errington J. 2003; Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776 [CrossRef]
    [Google Scholar]
  10. Daniel R. A, Williams A. M, Errington J. 1996; A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis . J Bacteriol 178:2343–2350
    [Google Scholar]
  11. Daniel R. A, Harry E. J, Errington J. 2000; Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis . Mol Microbiol 35:299–311 [CrossRef]
    [Google Scholar]
  12. de Pedro M. A, Quintela J. C, Holtje J. V, Schwarz H. 1997; Murein segregation in Escherichia coli . J Bacteriol 179:2823–2834
    [Google Scholar]
  13. Dewar S. J, Begg K. J, Donachie W. D. 1992; Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J Bacteriol 174:6314–6316
    [Google Scholar]
  14. Dougherty T. J, Kennedy K, Kessler R. E, Pucci M. J. 1996; Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichia coli . J Bacteriol 178:6110–6115
    [Google Scholar]
  15. Edwards D. H, Errington J. 1997; The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915 [CrossRef]
    [Google Scholar]
  16. Edwards D. H, Thomaides H. B, Errington J. 2000; Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J 19:2719–2727 [CrossRef]
    [Google Scholar]
  17. Flardh K, Palacios P, Vicente M. 1998; Cell division genes ftsQAZ in Escherichia coli require distant cis -acting signals upstream of ddlB for full expression. Mol Microbiol 30:305–315 [CrossRef]
    [Google Scholar]
  18. Gourdon P, Lindley N. D. 1999; Metabolic analysis of glutamate production by Corynebacterium glutamicum . Metab Eng 1:224–231 [CrossRef]
    [Google Scholar]
  19. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  20. Hara H, Yasuda S, Horiuchi K, Park J. T. 1997; A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW . J Bacteriol 179:5802–5811
    [Google Scholar]
  21. Harry E. J, Lewis P. J. 2003; Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis : evidence for division apparatus-independent recruitment of Min proteins to the division site. Mol Microbiol 47:37–48
    [Google Scholar]
  22. Holmes D. S, Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197 [CrossRef]
    [Google Scholar]
  23. Honrubia M. P, Fernandez F. J, Gil J. A. 1998; Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum . Mol Gen Genet 259:97–104 [CrossRef]
    [Google Scholar]
  24. Ikeda M, Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  25. Kalinowski J, Bathe B, Bartels D. 24 other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  26. Kieser T, Bibb M. J, Buttner M. J, Chater K. F, Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  27. Kirchner O, Tauch A. 2003; Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum . J Biotechnol 104:287–299 [CrossRef]
    [Google Scholar]
  28. Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K, Yukawa H. 1997; Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem Biophys Res Commun 236:383–388 [CrossRef]
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  30. Latch J. N, Margolin W. 1997; Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti . J Bacteriol 179:2373–2381
    [Google Scholar]
  31. Letek M, Valbuena N, Ramos A, Ordonez E, Gil J. A, Mateos L. M. 2006; Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum . J Bacteriol 188:409–423 [CrossRef]
    [Google Scholar]
  32. Marston A. L, Errington J. 1999; Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33:84–96 [CrossRef]
    [Google Scholar]
  33. Marston A. L, Thomaides H. B, Edwards D. H, Sharpe M. E, Errington J. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430 [CrossRef]
    [Google Scholar]
  34. Mateos L. M, Kalinowski J, Martin J. F, Schäfer A, Pühler A. 1996; Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing corynebacteria after intergeneric conjugation. J Bacteriol 178:5768–5775
    [Google Scholar]
  35. Mengin-Lecreulx D, Ayala J, Bouhss A, Parquet C, Hara H, van Heijenoort J. 1998; Contribution of the P[sub]mra[/sub] promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J Bacteriol 180:4406–4412
    [Google Scholar]
  36. Mercer K. L, Weiss D. S. 2002; The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184:904–912 [CrossRef]
    [Google Scholar]
  37. Nakayama K, Araki K, Kase H. 1978; Microbial production of essential amino acid with Corynebacterium glutamicum mutants. Adv Exp Med Biol 105:649–661
    [Google Scholar]
  38. Nanninga N. 1998; Morphogenesis of Escherichia coli . Microbiol Mol Biol Rev 62:110–129
    [Google Scholar]
  39. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. 2003; Promoters of Corynebacterium glutamicum . J Biotechnol 104:311–323 [CrossRef]
    [Google Scholar]
  40. Pogliano J, Pogliano K, Weiss D. S, Losick R, Beckwith J. 1997; Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci U S A 94:559–564 [CrossRef]
    [Google Scholar]
  41. Ramos A, Adham S. A, Gil J. A. 2003a; Cloning and expression of the inorganic pyrophosphatase gene from the amino acid producer Brevibacterium lactofermentum ATCC 13869. FEMS Microbiol Lett 225:85–92 [CrossRef]
    [Google Scholar]
  42. Ramos A, Honrubia M. P, Valbuena N, Vaquera J, Mateos L. M, Gil J. A. 2003b; Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum . Microbiology 149:3531–3542 [CrossRef]
    [Google Scholar]
  43. Ramos A, Honrubia M. P, Vega D, Ayala J. A, Bouhss A, Mengin-Lecreulx D, Gil J. A. 2004; Characterization and chromosomal organization of the murD–murC–ftsQ region of Corynebacterium glutamicum ATCC 13869. Res Microbiol 155:174–184 [CrossRef]
    [Google Scholar]
  44. Ramos A, Letek M, Campelo A. B, Vaquera J, Mateos L. M, Gil J. A. 2005; Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology 151:2563–2572 [CrossRef]
    [Google Scholar]
  45. Sanger F, Nicklen S, Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  46. Santamaria R. I, Gil J. A, Mesas J. M, Martin J. F. 1984; Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum . J Gen Microbiol 130:2237–2246
    [Google Scholar]
  47. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A.-H, Pühler A. 1990; High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1663–1666
    [Google Scholar]
  48. Siemering K. R, Golbik R, Sever R, Haseloff J. 1996; Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663 [CrossRef]
    [Google Scholar]
  49. Tauch A, Kirchner O, Loffler B, Gotker S, Kalinowski J, Pühler A. 2002; Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367 [CrossRef]
    [Google Scholar]
  50. Thomaides H. B, Freeman M, El Karoui M, Errington J. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporultion. Genes Dev 15:1662–1673 [CrossRef]
    [Google Scholar]
  51. Umeda A, Amako K. 1983; Growth of the surface of Corynebacterium diphtheriae . Microbiol Immunol 27:663–671 [CrossRef]
    [Google Scholar]
  52. Vohradsky J, Li X. M, Thompson C. J. 1997; Identification of procaryotic developmental stages by statistical analyses of two-dimensional gel patterns. Electrophoresis 18:1418–1428 [CrossRef]
    [Google Scholar]
  53. Wachi M, Wijayarathna C. D, Teraoka H, Nagai K. 1999; A murC gene from coryneform bacteria. Appl Microbiol Biotechnol 51:223–228 [CrossRef]
    [Google Scholar]
  54. Walker J. R, Kovaric A, Allen J. S, Gustafson R. A. 1975; Regulation of bacterial cell division: temperature-sensitive mutants of Escherichia coli that are defective in septum formation. J Bacteriol 123:693–703
    [Google Scholar]
  55. Weiss D. S, Chen J. C, Ghigo J. M, Boyd D, Beckwith J. 1999; Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520
    [Google Scholar]
  56. Wijayarathna C. D, Wachi M, Nagai K. 2001; Isolation of ftsI and murE genes involved in peptidoglycan synthesis from Corynebacterium glutamicum . Appl Microbiol Biotechnol 55:466–470 [CrossRef]
    [Google Scholar]
  57. Young K. D. 2003; Bacterial shape. Mol Microbiol 49:571–580
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28773-0
Loading
/content/journal/micro/10.1099/mic.0.28773-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error