1887

Abstract

is known as a primary pathogen responsible for dental caries. One of the virulence factors of in cariogenicity is its ability to attach to the tooth surface and form a biofilm. Several surface proteins have been shown to be involved in this process. A 29 kDa surface protein named wall-associated protein A (WapA, antigen A or antigen III), was previously used as a vaccine in animal studies for immunization against dental caries. However, the function of WapA in is still not clear. This study characterized the function of WapA in cell surface structure and biofilm formation. Compared to the wild-type, the mutant had much-reduced cell chain length, diminished cell–cell aggregation, altered cell surface ultrastructure, and unstructured biofilm architecture. Furthermore, force spectroscopy revealed that the cell surface of the mutant was less sticky than that of the wild-type cells. More interestingly, these phenotypic differences diminished as sucrose concentration in the medium was increased to 0.5 %. Real-time RT-PCR analysis demonstrated that sucrose strongly repressed gene expression in both planktonic and biofilm cells. These results suggest that the WapA protein plays an important structural role on the cell surface, which ultimately affects sucrose-independent cell–cell aggregation and biofilm architecture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28883-0
2006-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2395.html?itemId=/content/journal/micro/10.1099/mic.0.28883-0&mimeType=html&fmt=ahah

References

  1. Binnig G, Quate C. F, Gerber C. 1986; Atomic force microscope. Phys Rev Lett 56:930–933 [CrossRef]
    [Google Scholar]
  2. Bowen W. H, Schilling K, Giertsen E, Pearson S, Lee S. F, Bleiweis A, Beeman D. 1991; Role of a cell surface-associated protein in adherence and dental caries. Infect Immun 59:4606–4609
    [Google Scholar]
  3. Chen A, Moy V. T. 2000; Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78:2814–2820 [CrossRef]
    [Google Scholar]
  4. Cole R. M, Hahn J. J. 1962; Cell wall replication in Streptococcus pyogenes . Science 135:722–724 [CrossRef]
    [Google Scholar]
  5. Cross S. E, Kreth J, Zhu L, Qi F, Shi W, Gimzewski J. K. 2006; Atomic force microscopy study of the structure–function relationships of the biofilm-forming bacterium Streptococcus mutans . Nanotechnology 17:S1–S7 [CrossRef]
    [Google Scholar]
  6. Douglas C. W, Russell R. R. 1982; Effect of specific antisera on adherence properties of the oral bacterium Streptococcus mutans . Arch Oral Biol 27:1039–1045 [CrossRef]
    [Google Scholar]
  7. Douglas C. W. I, Russell R. R. B. 1984; Effect of specific antisera upon Streptococcus mutans adherence to saliva-coated hydroxyapatite. FEMS Microbiol Lett 25:211–214 [CrossRef]
    [Google Scholar]
  8. Dufrene Y. F, Boonaert C. J, Gerin P. A, Asther M, Rouxhet P. G. 1999; Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium . J Bacteriol 181:5350–5354
    [Google Scholar]
  9. Ferretti J. J, Russell R. R. B, Dao M. L. 1989; Sequence analysis of the wall associated protein precursor of Streptococcus mutans antigen A. Mol Microbiol 3:469–478 [CrossRef]
    [Google Scholar]
  10. Fischetti V. A, Pancholi V, Schneewind O. 1990; Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 4:1603–1605 [CrossRef]
    [Google Scholar]
  11. Fisher T. E, Marszalek P. E, Fernandez J. M. 2000; Stretching single molecules into novel conformations using the atomic force microscope. Nature Structl Biol 7:719–724 [CrossRef]
    [Google Scholar]
  12. Hamada S, Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans . Microbiol Rev 44:331–384
    [Google Scholar]
  13. Harrington D. J, Russell R. R. 1993; Multiple changes in cell wall antigens of isogenic mutants of Streptococcus mutans . J Bacteriol 175:5925–5933
    [Google Scholar]
  14. Kasas S, Ikai A. 1995; A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680 [CrossRef]
    [Google Scholar]
  15. Kreth J, Hagerman E, Tam K, Merritt J, Wong D. T. W, Wu B. M, Myung N. V, Shi W, Qi F. 2004; Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy. Biofilms 1:239–263 [CrossRef]
    [Google Scholar]
  16. Kuramitsu H. K. 1993; Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4:159–176
    [Google Scholar]
  17. Kuramitsu H. K. 2000; Streptococcus mutans: molecular genetic analysis. In Gram-Positive Pathogens pp  280–286 Edited by Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Rood J. I. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Levesque C. M, Voronejskaia E, Huang Y. C, Mair R. W, Ellen R. P, Cvitkovitch D. G. 2005; Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans . Infect Immun 73:3773–3777 [CrossRef]
    [Google Scholar]
  19. Levy R, Maaloum M. 2002; Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 13:33–37 [CrossRef]
    [Google Scholar]
  20. Moro I, Russell M. W. 1983; Ultrastructural localization of protein antigens I/II and III in Streptococcus mutans . Infect Immun 41:410–413
    [Google Scholar]
  21. Murakami Y, Nakano Y, Yamashita Y, Koga T. 1997; Identification of a frameshift mutation resulting in premature termination and loss of cell wall anchoring of the PAc antigen of Streptococcus mutans GS-5. Infect Immun 65:794–797
    [Google Scholar]
  22. Paige M. F, Rainey J. K, Goh M. C. 1998; Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy. Biophys J 74:3211–3216 [CrossRef]
    [Google Scholar]
  23. Pelling A. E, Sehati S, Gralla E. B, Valentine J. S, Gimzewski J. K. 2004; Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae . Science 305:1147–1150 [CrossRef]
    [Google Scholar]
  24. Pelling A. E, Li Y, Shi W, Gimzewski J. K. 2005; Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102:6484–6489 [CrossRef]
    [Google Scholar]
  25. Podbielski A, Spellerberg B, Woischnik M, Pohl B, Lutticken R. 1996; Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). Gene 177:137–147 [CrossRef]
    [Google Scholar]
  26. Qi F, Chen P, Caufield P. W. 2001; The group I strain of Streptococcus mutans , UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21 [CrossRef]
    [Google Scholar]
  27. Qian H, Dao M. L. 1993; Inactivation of the Streptococcus mutans wall-associated protein A gene (wapA) results in a decrease in sucrose-dependent adherence and aggregation. Infect Immun 61:5021–5028
    [Google Scholar]
  28. Russell R. R. B, Johnson N. W. 1987; The prospects for vaccination against dental caries. Brit Dent J 162:29–34 [CrossRef]
    [Google Scholar]
  29. Russell M. W, Harrington D. J, Russell R. R. B. 1995; Identity of Streptococcus mutans surface protein antigen III and wall-associated protein antigen A. Infect Immun 63:733–735
    [Google Scholar]
  30. Sato Y, Okamoto K, Kizaki H. 2002a; gbpC and pac gene mutations detected in Streptococcus mutans strain GS-5. Oral Microbiol Immunol 17:263–266 [CrossRef]
    [Google Scholar]
  31. Sato Y, Senpuku H, Okamoto K, Hanada N, Kizaki H. 2002b; Streptococcus mutans binding to solid phase dextran mediated by the glucan-binding protein C. Oral Microbiol Immunol 17:252–256 [CrossRef]
    [Google Scholar]
  32. Sen S, Subramanian S, Discher D. E. 2005; Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89:3203–3213 [CrossRef]
    [Google Scholar]
  33. Shah D. S. H, Russell R. R. B. 2004; A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans . Microbiology 150:1947–1956 [CrossRef]
    [Google Scholar]
  34. Smith D. J, Taubman M. A. 1996; Experimental immunization of rats with a Streptococcus mutans 59-kilodalton glucan-binding protein protects against dental caries. Infect Immun 64:3069–3073
    [Google Scholar]
  35. van der Aa B. C, Michel R. M, Asther M, Zamora M. T, Rouxhet P. G, Dufrene Y. F. 2001; Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17:3116–3119 [CrossRef]
    [Google Scholar]
  36. van der Aa B. C, Asther M, Dufrene Y. F. 2002; Surface properties of Aspergillus oryzae spores investigated by atomic force microscopy. Colloids Surf B Biointerfaces 24:277–284 [CrossRef]
    [Google Scholar]
  37. Wen Z. T, Burne R. A. 2002; Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans . Appl Environ Microbiol 68:1196–1203 [CrossRef]
    [Google Scholar]
  38. Wen Z. T, Suntharaligham P, Cvitkovitch D. G, Burne R. A. 2005; Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73:219–225 [CrossRef]
    [Google Scholar]
  39. Yamashita Y, Bowen W. H, Burne R. A, Kuramitsu H. K. 1993; Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817
    [Google Scholar]
  40. Yoshida A, Kuramitsu H. K. 2002; Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28883-0
Loading
/content/journal/micro/10.1099/mic.0.28883-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error