1887

Abstract

The (-like) genes encode putative transcription factors unique to actinomycetes. This study characterized the promoter element of one of the seven genes of , (Rv3219c). The results reveal that is transcribed by a class I-type cAMP receptor protein (CRP)-dependent promoter, harbouring a CRP-binding site positioned at −58.5 with respect to its transcription start point. promoter activity analysis and electrophoretic mobility shift assays suggest that the expression of is indeed regulated by cAMP-dependent binding of CRP (encoded by the gene Rv3676) to the 5′ untranslated region (5′UTR). -Galactosidase gene fusion analysis revealed induction of the promoter in on addition of exogenous dibutyric cAMP (a diffusible cAMP analogue) only when an intact CRP-binding site was present. These results indicate that transcription is regulated in part by cAMP levels via direct binding of cAMP-activated CRP to a consensus CRP-binding site in the 5′UTR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28924-0
2006-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2749.html?itemId=/content/journal/micro/10.1099/mic.0.28924-0&mimeType=html&fmt=ahah

References

  1. Alspaugh J. A, Pukkila-Worley R, Harashima T, Cavallo L. M, Funnell D, Cox G. M, Perfect J. R, Kronstad J. W, Heitman J. 2002; Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans . Eukaryot Cell 1:75–84 [CrossRef]
    [Google Scholar]
  2. Bai G, McCue L. A, McDonough K. A. 2005; Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J Bacteriol 187:7795–7804 [CrossRef]
    [Google Scholar]
  3. Berg O. G, von Hippel P. H. 1988; Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723 [CrossRef]
    [Google Scholar]
  4. Botsford J. L, Harman J. G. 1992; Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122
    [Google Scholar]
  5. Busby S, Buc H. 1987; Positive regulation of gene expression by cyclic AMP and its receptor protein in Escherichia coli . Microbiol Sci 4:371–375
    [Google Scholar]
  6. Busby S, Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 [CrossRef]
    [Google Scholar]
  7. Caler E. V, Morty R. E, Burleigh B. A, Andrews N. W. 2000; Dual role of signaling pathways leading to Ca[sup]2+[/sup] and cyclic AMP elevation in host cell invasion by Trypanosoma cruzi . Infect Immun 68:6602–6610 [CrossRef]
    [Google Scholar]
  8. Chater K. F. 1972; A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor . J Gen Microbiol 72:9–28 [CrossRef]
    [Google Scholar]
  9. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Crasnier M. 1996; Cyclic AMP and catabolite repression. Res Microbiol 147:479–482 [CrossRef]
    [Google Scholar]
  11. Davis N. K, Chater K. F. 1992; The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet 232:351–358
    [Google Scholar]
  12. de Crombrugghe B, Busby S, Buc H. 1984; Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838 [CrossRef]
    [Google Scholar]
  13. D'Souza C. A, Heitman J. 2001; Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364 [CrossRef]
    [Google Scholar]
  14. Dye C, Scheele S, Dolin P, Pathania V, Raviglione M. C. 1999; Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686 [CrossRef]
    [Google Scholar]
  15. Ebright R. H. 1993; Transcription activation at Class I CAP-dependent promoters. Mol Microbiol 8:797–802 [CrossRef]
    [Google Scholar]
  16. Flardh K, Findlay K. C, Chater K. F. 1999; Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145:2229–2243
    [Google Scholar]
  17. Frohman M. A. 1993; Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356
    [Google Scholar]
  18. Gazdik M. A, McDonough K. A. 2005; Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J Bacteriol 187:2681–2692 [CrossRef]
    [Google Scholar]
  19. Geiman D. E, Raghunand T. R, Agarwal N, Bishai W. R. 2006; Differential gene expression in response to antibiotic exposure, growth phase, and stress conditions among seven Mycobacterium tuberculosis whiB -like genes. Antimicrob Agents Chemother (in press)
    [Google Scholar]
  20. Gomez J. E, Bishai W. R. 2000; whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97:8554–8559 [CrossRef]
    [Google Scholar]
  21. Good L, Nazar R. N. 1992; An improved thermal cycle for two-step PCR-based targeted mutagenesis. Nucleic Acids Res 20:4934 [CrossRef]
    [Google Scholar]
  22. Gross A, Bouaboula M, Casellas P, Liautard J. P, Dornand J. 2003; Subversion and utilization of the host cell cyclic adenosine 5′-monophosphate/protein kinase A pathway by Brucella during macrophage infection. J Immunol 170:5607–5614 [CrossRef]
    [Google Scholar]
  23. Jain S, Kaushal D, DasGupta S. K, Tyagi A. K. 1997; Construction of shuttle vectors for genetic manipulation and molecular analysis of mycobacteria. Gene 190:37–44 [CrossRef]
    [Google Scholar]
  24. Jakimowicz P, Cheesman M. R, Bishai W. R, Chater K. F, Thomson A. J, Buttner M. J. 2005; Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J Biol Chem 280:8309–8315 [CrossRef]
    [Google Scholar]
  25. Jansen C, Gronenborn A. M, Clore G. M. 1987; The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA. Biochem J 246:227–232
    [Google Scholar]
  26. Kim T. H, Park J. S, Kim H. J, Kim Y, Kim P, Lee H. S. 2005; The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem Biophys Res Commun 337:757–764 [CrossRef]
    [Google Scholar]
  27. Kolb A, Busby S, Buc H, Garges S, Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795 [CrossRef]
    [Google Scholar]
  28. Lawson C. L, Swigon D, Murakami K. S, Darst S. A, Berman H. M, Ebright R. H. 2004; Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14:10–20 [CrossRef]
    [Google Scholar]
  29. Lee N, D'Souza C. A, Kronstad J. W. 2003; Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427 [CrossRef]
    [Google Scholar]
  30. Li C. C, Merrell D. S, Camilli A, Kaper J. B. 2002; ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae . Mol Microbiol 43:1577–1589 [CrossRef]
    [Google Scholar]
  31. Lowrie D. B, Jackett P. S, Ratcliffe N. A. 1975; Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature 254:600–602 [CrossRef]
    [Google Scholar]
  32. Lowrie D. B, Aber V. R, Jackett P. S. 1979; Phagosome-lysosome fusion and cyclic adenosine 3′: 5′-monophosphate in macrophages infected with Mycobacterium microti , Mycobacterium bovis BCG or Mycobacterium lepraemurium . J Gen Microbiol 110:431–441 [CrossRef]
    [Google Scholar]
  33. McCue L. A, McDonough K. A, Lawrence C. E. 2000; Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis . Genome Res 10:204–219 [CrossRef]
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Molle V, Palframan W. J, Findlay K. C, Buttner M. J. 2000; WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J Bacteriol 182:1286–1295 [CrossRef]
    [Google Scholar]
  36. Morris R. P, Nguyen L, Gatfield J. 9 other authors 2005; Ancestral antibiotic resistance in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 102:12200–12205 [CrossRef]
    [Google Scholar]
  37. Padh H, Venkitasubramanian T. A. 1977; Adenosine 3′,5′-monophosphate in mycobacteria. Life Sci 20:1273–1280 [CrossRef]
    [Google Scholar]
  38. Rickman L, Scott C, Hunt D. M. 7 other authors 2005; A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56:1274–1286 [CrossRef]
    [Google Scholar]
  39. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Soliveri J. A, Gomez J, Bishai W. R, Chater K. F. 2000; Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146:333–343
    [Google Scholar]
  41. Spreadbury C. L, Pallen M. J, Overton T, Behr M. A, Mostowy S, Spiro S, Busby S. J, Cole J. A. 2005; Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151:547–556 [CrossRef]
    [Google Scholar]
  42. Steyn A. J, Collins D. M, Hondalus M. K, Kawakami R. P, Bloom B. R, Jacobs W. R. Jr 2002; Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A 99:3147–3152 [CrossRef]
    [Google Scholar]
  43. Ushida C, Aiba H. 1990; Helical phase dependent action of CRP: effect of the distance between the CRP site and the −35 region on promoter activity. Nucleic Acids Res 18:6325–6330 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28924-0
Loading
/content/journal/micro/10.1099/mic.0.28924-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error