1887

Abstract

Vfr, a global regulator of virulence factors, is a homologue of the cAMP receptor protein, CRP. Vfr is 91 % similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While can complement an mutant in -galactosidase production, tryptophanase production and catabolite repression, can only complement a subset of Vfr-dependent phenotypes in . Using specific CRP binding site mutations, it is shown that Vfr requires the same nucleotides as CRP for optimal transcriptional activity from the promoter. In contrast, CRP did not bind Vfr target sequences in the promoters of the and genes. Footprinting analysis revealed Vfr protected sequences upstream of , , and the quorum sensing regulator , that are similar to but significantly divergent from the CRP consensus binding sequence, and Vfr causes similar DNA bending to CRP in bound target sequences. Using a preliminary Vfr consensus binding sequence deduced from the Vfr-protected sites, Vfr target sequences were identified upstream of the virulence-associated genes , , , and , and in the , , intergenic regions. From these sequences the Vfr consensus binding sequence, 5′-ANWWTGNGAWNY : AGWTCACAT-3′, was formulated. This study suggests that Vfr shares many of the same functions as CRP, but has specialized functions, at least in terms of DNA target sequence binding, required for regulation of a subset of genes in its regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29008-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3485.html?itemId=/content/journal/micro/10.1099/mic.0.29008-0&mimeType=html&fmt=ahah

References

  1. Albus A. M, Pesci E. C, Runyen-Janecky L. J, West S. E. H, Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3928–3935
    [Google Scholar]
  2. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A, Struhl K. 1990 Current Protocols in Molecular Biology New York: Greene Publishing and Wiley-Interscience;
  3. Baichoo N, Heyduk T. 1999; DNA-induced conformational changes in cyclic AMP receptor protein: detection and mapping by a protein footprinting technique using multiple chemical proteases. J Mol Biol 290:37–48 [CrossRef]
    [Google Scholar]
  4. Beatson S. A, Whitchurch C. B, Sargent J. L, Levesque R. C, Mattick J. S. 2002; Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa . J Bacteriol 184:3605–3613 [CrossRef]
    [Google Scholar]
  5. Berg O. G, von Hippel P. H. 1988; Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to binding sites. J Mol Biol 200:709–723 [CrossRef]
    [Google Scholar]
  6. Bertani I, Sevo M, Kojic K, Venturi V. 2003; Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS/RpoS in Pseudomonas . Arch Microbiol 180:264–271 [CrossRef]
    [Google Scholar]
  7. Blattner F. R, Plunkett G 3rd, Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  8. Botsford J. L. 1981; Cyclic nucleotides in procaryotes. Microbiol Rev 45:620–642
    [Google Scholar]
  9. Brierley I, Hoggett J. G. 1992; Binding of the cyclic AMP receptor protein of Escherichia coli and DNA bending at the P4 promoter of pBR322. Biochem J 285:91–97
    [Google Scholar]
  10. Busby S, Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 [CrossRef]
    [Google Scholar]
  11. Busby S, Kolb A. 1996; The CAP modulon. In Regulation of Gene Expression in Escherichia coli pp.  256–279 Edited by Lin E. C. C., Lynch A. S. New York: G. Landes Co;
    [Google Scholar]
  12. Chitnis C. E, Ohman D. E. 1993; Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8:583–593 [CrossRef]
    [Google Scholar]
  13. Crooks G. E, Hon G, Chondonia J. M, Brenner S. E. 2004; WebLogo: a sequence logo generator. Genome Res 14:1188–1190 [CrossRef]
    [Google Scholar]
  14. Cunliffe H. E, Merriman T. R, Lamont I. L. 1995; Cloning and characterization of pvdS , a gene required for pyoverdine synthesis in Pseudomonas aeruginosa : PvdS is probably an alternative sigma factor. J Bacteriol 177:2744–2750
    [Google Scholar]
  15. Dasgupta N, Ferrell E. P, Kanack K. J, West S. E, Ramphal R. 2002; fleQ , the gene encoding the major flagellar regulator of Pseudomonas aeruginosa , is sigma70 dependent and is down-regulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250 [CrossRef]
    [Google Scholar]
  16. Derouaux A, Dehareng D, Lecocq E. 9 other authors 2004; Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochem Biophys Res Commun 325:983–990 [CrossRef]
    [Google Scholar]
  17. De Vault J. D, Hendrickson W, Kato J, Chakrabarty A. M. 1991; Environmentally regulated algD promoter is responsive to cAMP receptor protein in Escherichia coli . Mol Microbiol 5:2503–2509 [CrossRef]
    [Google Scholar]
  18. Ebright R. H, Cossart P, Gicquel-Sanzy B, Beckwith J. 1984a; Molecular basis of DNA sequence recognition by the catabolite gene activator protein: detailed inferences from three mutations that alter DNA sequence specificity. Proc Natl Acad Sci U S A 81:7274–7278 [CrossRef]
    [Google Scholar]
  19. Ebright R. H, Cossart P, Gicquel-Sanzy B, Beckwith J. 1984b; Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli . Nature 311:232–235 [CrossRef]
    [Google Scholar]
  20. Ebright R. H, Kolb A, Buc H, Kunkel T. A, Krakow J. S, Beckwith J. 1987; Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli : altered DNA-sequence-recognition properties of[Val181]CAP and [Leu181]CAP. Proc Natl Acad Sci U S A 84:6083–6087 [CrossRef]
    [Google Scholar]
  21. Ebright R, Ebright Y. W, Gunasekera A. 1989; Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res 17:10295–10305 [CrossRef]
    [Google Scholar]
  22. Figurski D. H, Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [CrossRef]
    [Google Scholar]
  23. Frank D. W, Storey D. G, Hindahl M. S, Iglewski B. H. 1989; Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa . J Bacteriol 171:5304–5313
    [Google Scholar]
  24. Furste J. P, Pansegrau W, Frank R, Blocker H, Scholz P, Bagdasarian M, Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131 [CrossRef]
    [Google Scholar]
  25. Gacesa P. 1998; Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology 144:1133–1143 [CrossRef]
    [Google Scholar]
  26. Garriga X, Calero S, Barbe J. 1992; Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida . Mol Gen Genet 236:125–134
    [Google Scholar]
  27. Ghosaini L. R, Brown A. M, Sturtevant J. 1988; Scanning calorimetric study of the thermal unfolding of catabolite activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides. Biochemistry 27:5257–5261 [CrossRef]
    [Google Scholar]
  28. Giraud-Panis M. J, Toulme J. C, Maurizot J. C, Culard F. 1992; Specific binding of cyclic-AMP receptor protein to DNA. Effect of the sequence and of the introduction of a nick in the binding site. J Biomol Struct Dyn 10:295–309 [CrossRef]
    [Google Scholar]
  29. Haas D, Holloway B. W, Schambock A, Leisinger T. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa . Mol Gen Genet 154:7–22 [CrossRef]
    [Google Scholar]
  30. Hamood A. N, Wick M. J, Iglewski B. H. 1990; Secretion of toxin A from Pseudomonas aeruginosa PAO1, PAK, and PA103 by Escherichia coli . Infect Immun 58:1133–1140
    [Google Scholar]
  31. Handfield J, Gagnon L, Dargis M, Huletsky A. 1997; Sequence of the ponA gene and characterization of the penicillin-binding protein 1A of Pseudomonas aeruginosa PAO1. Gene 199:49–56 [CrossRef]
    [Google Scholar]
  32. Holloway B. W, Krishnapillai V, Morgan A. F. 1979; Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102
    [Google Scholar]
  33. Liu-Johnson H.-N, Gartenberg M. R, Crothers D. M. 1986; The DNA binding domain and bending angle of E. coli CAP protein. Cell 47:995–1005 [CrossRef]
    [Google Scholar]
  34. Martin P. R, Hobbs M, Free P. D, Jeske Y, Mattick J. S. 1993; Characterization of pilQ , a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 9:857–868 [CrossRef]
    [Google Scholar]
  35. Martin P. R, Watson A. A, McCaul T. F, Mattick J. S. 1995; Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 16:497–508 [CrossRef]
    [Google Scholar]
  36. Maxam A. M, Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560
    [Google Scholar]
  37. Medina G, Juarez K, Diaz R, Soberon-Chavez G. 2003; Transcriptional regulation of Pseudomonas aeruginosa rhlR , encoding a quorum-sensing regulatory protein. Microbiology 149:3073–3081 [CrossRef]
    [Google Scholar]
  38. Miller J. H. 1992 A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Ostroff R. M, Vasil A. I, Vasil M. L. 1990; Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa . J Bacteriol 172:5915–5923
    [Google Scholar]
  40. Pyles E. A, Lee J. C. 1998; Escherichia coli cAMP receptor protein–DNA complexes 2. Structural asymmetry of DNA bending. Biochem 37:5201–5210 [CrossRef]
    [Google Scholar]
  41. Pyles E. A, Chin A. J, Lee J. C. 1998; Escherichia coli cAMP receptor protein–DNA complexes. 1. Energetic contributions of half-sites and flanking sequences in DNA recognition. Biochemistry 37:5194–5200 [CrossRef]
    [Google Scholar]
  42. Runyen-Janecky L. J, Sample A. K, Maleniak T. C, West S. E. H. 1997; A divergently transcribed open reading frame is located upstream of the Pseudomonas aeruginosa vfr gene, a homolog of Escherichia coli crp . J Bacteriol 179:2802–2809
    [Google Scholar]
  43. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  44. Schneider T. D, Stephens R. M. 1990; Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100 [CrossRef]
    [Google Scholar]
  45. Schultz S. C, Shields G. C, Steitz T. A. 1991; Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253:1001–1007 [CrossRef]
    [Google Scholar]
  46. Shen B. F, Tai P. C, Pritchard A. E, Vasil M. L. 1987; Nucleotide sequences and expression in Escherichia coli of the in-phase overlapping Pseudomonas aeruginosa plcR genes. J Bacteriol 169:4602–4607
    [Google Scholar]
  47. Smith A. W, Iglewski B. H. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509 [CrossRef]
    [Google Scholar]
  48. Smith R. S, Wolfgang M. C, Lory S. 2004; An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect Immun 72:1677–1684 [CrossRef]
    [Google Scholar]
  49. Song J, Xie G, Elf P. K, Young K. D, Jensen R. A. 1998; Comparative analysis of Pseudomonas aeruginosa penicillin-binding protein 7 in the context of its membership in the family of low-molecular-mass PBPs. Microbiology 144:975–983 [CrossRef]
    [Google Scholar]
  50. Storey D. G, Frank D. W, Farinha M. A, Kropinski A. M, Iglewski B. H. 1990; Multiple promoters control the regulation of the Pseudomonas aeruginosa regA gene. Mol Microbiol 4:499–503 [CrossRef]
    [Google Scholar]
  51. Stover C. K, Pham X. Q, Erwin A. L. 28 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  52. Suh S. J, Runyen-Janecky L. J, Maleniak T. C, Hager P, MacGregor C. H, Zielinski-Mozny N. A, West S. E, Phibbs P. V Jr. 2002; Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa . Microbiology 148:1561–1569
    [Google Scholar]
  53. Tsaur M. L, Clowes R. C. 1989; Localization of the control region for expression of exotoxin A in Pseudomonas aeruginosa . J Bacteriol 171:2599–2604
    [Google Scholar]
  54. West S. E. H, Sample A. K, Runyen-Janecky L. J. 1994; The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol 176:7532–7542
    [Google Scholar]
  55. Whitchurch C. B, Alm R. A, Mattick J. S. 1996; The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 93:9839–9843 [CrossRef]
    [Google Scholar]
  56. Whitchurch C. B, Beatson S. A, Comolli J. C. 10 other authors 2005; Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 55:1357–1378 [CrossRef]
    [Google Scholar]
  57. Wilderman P. J, Vasil A. I, Johnson Z, Wilson M. J, Cunliffe H. E, Lamont I. L, Vasil M. L. 2001; Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa . Infect Immun 69:5385–5394 [CrossRef]
    [Google Scholar]
  58. Wolfgang M. C, Lee V. T, Gilmore M. E, Lory S. 2003; Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4:253–263 [CrossRef]
    [Google Scholar]
  59. Zhang X, Ebright R. H. 1990a; Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proc Natl Acad Sci U S A 87:4717–4721 [CrossRef]
    [Google Scholar]
  60. Zhang X. P, Ebright R. H. 1990b; Substitution of 2 base pairs (1 base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. J Biol Chem 265:12400–12403
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29008-0
Loading
/content/journal/micro/10.1099/mic.0.29008-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error