1887

Abstract

The compound pyridine-2,6-bis(thiocarboxylic acid) (PDTC) is known to be produced and excreted by three strains of . Its reactivity includes the complete dechlorination of the environmental contaminant carbon tetrachloride. PDTC functions as a siderophore; however, roles as a ferric reductant and antimicrobial agent have also been proposed. PDTC function and regulation were further explored by characterizing the phenotypes of mutants in predicted membrane transporter genes. The functions of a predicted outer-membrane transporter (PdtK) and a predicted inner-membrane permease (PdtE) were examined in DSM 3601. Uptake of iron from Fe(III):PDTC, and bioutilization of PDTC in a chelated medium, were dependent upon PdtK and PdtE. Another strain of (KT2440), which lacks orthologues, showed growth inhibition by PDTC that could be relieved by introducing a plasmid containing KCPE. Transcriptional activation in response to exogenously added PDTC (25 μM) was unaltered by the K or E mutations; each mutant showed activation of a transcriptional reporter, indistinguishable from an isogenic PDTC utilization-proficient strain. The data demonstrate that PdtK and PdtE constitute a bipartite outer-membrane/inner-membrane transport system for iron acquisition from Fe(III):PDTC. Disruptions in this portion of the DSM 3601 gene cluster do not abolish PDTC-dependent transcriptional signalling.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29116-0
2006-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/3157.html?itemId=/content/journal/micro/10.1099/mic.0.29116-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schaffer A. A, Zhang J, Zhang Z, Miller W, Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anderson M. T, Armstrong S. K. 2004; The BfeR regulator mediates enterobactin-inducible expression of Bordetella enterobactin utilization genes. J Bacteriol 186:7302–7311 [CrossRef]
    [Google Scholar]
  3. Bendtsen J. D, Hielsen H, Brunak S, von Heijne G. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  4. Blatny J. M, Brautaset T, Winther-Larsen H. C, Haugan K, Valla S. 1997a; Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379
    [Google Scholar]
  5. Blatny J. M, Brautaset T, Winther-Larsen H. C, Karunakaran P, Valla S. 1997b; Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid 38:35–51 [CrossRef]
    [Google Scholar]
  6. Brandon M. S, Paszczynski A, Korus R. A, Crawford R. L. 2003; The determination of the stability constant for the iron(II) complex of the biochelator pyridine-2,6-bis(monothiocarboxylic acid). Biodegradation 14:73–82 [CrossRef]
    [Google Scholar]
  7. Brickman T. J, Kang H. Y, Armstrong S. K. 2001; Transcriptional activation of Bordetella alcaligin siderophore genes requires the AlcR regulator with alcaligin as inducer. J Bacteriol 183:483–489 [CrossRef]
    [Google Scholar]
  8. Cornelis P, Bouia A, Belarbi A, Guyonvarch A, Kammerer B, Hannaert V, Hubert J. C. 1989; Cloning and analysis of the gene for the major outer memrane lipoprotein from Pseudomonas aeruginosa . Mol Microbiol 3:421–428 [CrossRef]
    [Google Scholar]
  9. Cortese M, Paszczynski A, Lewis T. A, Sebat J, Crawford R. L. 2002; Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. BioMetals 15:103–120 [CrossRef]
    [Google Scholar]
  10. Criddle C. S, DeWitt J. T, Grbic-Galic D, McCarty P. L. 1990; Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246
    [Google Scholar]
  11. Cuiv P. O, Clarke P, Lynch D, O'Connell M. 2004; Identification of rht X and fpt X, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa , respectively. J Bacteriol 186:2996–3005 [CrossRef]
    [Google Scholar]
  12. DeLorenzo V, Herrero M, Jakubzik U, Timmis K. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  13. Ditta G, Stanfield S, Corbin D, Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci U S A 77:7347–7351 [CrossRef]
    [Google Scholar]
  14. Dybas M. J, Hyndman D. W, Heine R. 7 other authors 2002; Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644 [CrossRef]
    [Google Scholar]
  15. Ferguson D. A, Deisenhofer J. 2002; TonB-dependent receptors – structural perspectives. Biochim Biophys Acta 1565:318–332 [CrossRef]
    [Google Scholar]
  16. Fetherston J. D, Bearden S. W, Perry R. D. 1996; YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol Microbiol 22:315–325 [CrossRef]
    [Google Scholar]
  17. Ghysels B, Dieu B, Beatson S, Pirnay J.-P, Ochsner U, Vasil A, Cornelis P. 2004; FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa . Microbiology 150:1671–1680 [CrossRef]
    [Google Scholar]
  18. Ghysels B, Ochsner U, Heinisch L, Vasil M, Cornelis P, Matthijs S, Möllman U. 2005; The Pseudomonas aeruginosa pir A gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174 [CrossRef]
    [Google Scholar]
  19. Heinrichs D. E, Poole K. 1993; Cloning and sequence analysis of a gene (pch R) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa . J Bacteriol 175:5882–5889
    [Google Scholar]
  20. Heinrichs D. E, Poole K. 1996; PchR, a regulator of ferripyochelin receptor gene (fpt A) expression in Pseudomonas aeruginosa , functions both as an activator and as a repressor. J Bacteriol 178:2586–2592
    [Google Scholar]
  21. Hersman L. E, Huang A, Maurice P. A, Forsythe J. H. 2000; Siderophore production and iron reduction by Pseudomonas mendocina in response to iron deprivation. Geomicrobiol J 17:261–273 [CrossRef]
    [Google Scholar]
  22. Hildebrand U, Ockels W, Lex J, Budzikiewicz H. 1983; Zur struktur eines 1 : 1-adduktes von pyridin-2,6-dicarbothiosäure und pyridin. Phosphorus Sulfur 16:361–364
    [Google Scholar]
  23. Klecka G. M, Gibson D. T. 1981; Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Lee C.-H, Lewis T. A, Paszczynski A, Crawford R. L. 1999; Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261:562–566 erratum 265, 770
    [Google Scholar]
  26. Lewis T. A, Cortese M, Sebat J, Green T, Lee C.-H, Crawford R. L. 2000; A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl[sub]4[/sub]-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environ Microbiol 2:407–416 [CrossRef]
    [Google Scholar]
  27. Lewis T. A, Leach L, Morales S. E, Austin P. R, Hartwell H. J, Kaplan B, Forker C, Meyer J.-M. 2004; Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas . Environ Microbiol 6:159–169 [CrossRef]
    [Google Scholar]
  28. Lynch D, O'Brien J, Welch T, Clarke P, Cuiv P. O, Crosa J. H, O'Connell M. 2001; Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti . J Bacteriol 183:2576–2583 [CrossRef]
    [Google Scholar]
  29. Matthijs S, Baysse C, Koedam N. 8 other authors 2004; The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384 [CrossRef]
    [Google Scholar]
  30. Meyer J.-M. 1992; Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa : possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958 [CrossRef]
    [Google Scholar]
  31. Michel L, Gonzales N, Jagdeep S, Nguyen-Ngoc T, Reimmann C. 2005; PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509 [CrossRef]
    [Google Scholar]
  32. Miller V, Mekalanos J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires tox R. J Bacteriol 170:2575–2583
    [Google Scholar]
  33. Nelson K. E, Weinei C, Paulsen I. T. 40 others 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808 [CrossRef]
    [Google Scholar]
  34. Ockels W, Budzikiewicz H, Römer A. 1978; An Fe(III) complex of pyridine-2,6-di (monothiocarboxylic acid) – a novel bacterial metabolic product. Tetrahedron Lett 36:3341–3342
    [Google Scholar]
  35. Paszczynski A, Sebat J, Erwin D, Crawford R. L. 2004; Biotransformation of carbon tetrachloride by the facultative anaerobic bacterium Pseudomonas stutzeri. In Strict and Facultative Anaerobes: Medical and Environmental Aspects, 1st edn. pp  317–328 Edited by Nakano M. M., Zuber P. Wymondham: Horizon Bioscience;
    [Google Scholar]
  36. Poole K, McKay G. A. 2003; Iron acquisition and its control in Pseudomonas aeruginosa : many roads lead to Rome. Front Biosci 8:661–686 [CrossRef]
    [Google Scholar]
  37. Schweizer H. P. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. BioTechniques 15:831–833
    [Google Scholar]
  38. Sebat J, Paszczynski A, Cortese M, Crawford R. L. 2001; Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942 [CrossRef]
    [Google Scholar]
  39. Sepulveda-Torres L. d, C, Huang A, Kim H, Criddle C. S. 2002; Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. J Mol Microbiol Biotechnol 4:151–161
    [Google Scholar]
  40. Stolworthy J. C, Paszczynski A, Korus R. A, Crawford R. L. 2001; Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida . Biodegradation 12:411–418 [CrossRef]
    [Google Scholar]
  41. Visca P, Leoni L, Wilson M. J, Lamont I. L. 2002; Iron transport and regulation, cell signaling and genomics: lessons from Escherichia coli and Pseudomonas . Mol Microbiol 45:1177–1190 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29116-0
Loading
/content/journal/micro/10.1099/mic.0.29116-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error