1887

Abstract

Rapidly growing liquid shake cultures of secreted a polysaccharide which caused an increase in the viscosity of the nutrient liquor. Glucose/malt medium supported most rapid growth and greatest polysaccharide accumulation. Acetone precipitation and dialysis resulted in preparations which were essentially ash and nitrogen free. Gel chromatography indicated that the polysaccharide was polydisperse over the mol. wt range 80000 to 5000. Molecular size was positively correlated with viscosity and inversely correlated with aqueous solubility. Carbohydrate analyses by paper and gas-liquid chromatography indicated that glucose accounted for > 90% of the sugar residues present. Mannose and galactose were also detected. Charged groups were absent. Periodate oxidation revealed that the main linkage was 1 → 4, with a low proportion of 1 → 2 linkages. The degree of branching varied between every fifth and every tenth residue. Linkages of 1 → 3 type were virtually absent. Interaction with concanavalin A indicated the presence of non-reducing terminal --glucopyranosyl or -mannopyranosyl residues.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-102-1-157
1977-09-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/102/1/mic-102-1-157.html?itemId=/content/journal/micro/10.1099/00221287-102-1-157&mimeType=html&fmt=ahah

References

  1. Archer S. A. 1973; Pellet form of growth of Sclerotinia fructigena in shake culture. Transactions of the British Mycological Society 60:235–244
    [Google Scholar]
  2. Banks G. T., Mantle P. G., Szczyrbak C. A. 1974; Large-scale production of clavine alkaloids by Claviceps fusiformis. Journal of General Microbiology 82:345–361
    [Google Scholar]
  3. Barker S. A., Bourne E. J., Stacey M., Whiffen D. H. 1954; Infrared spectra of carbohydrates. Part I. Some derivatives of d-glucopyranose. Journal of the Chemical Society171–176
    [Google Scholar]
  4. Buck K. W., Chen A. W., Dickerson A. G., Chain E. B. 1968; Formation and structure of extracellular glucans produced by Claviceps species. Journal of General Microbiology 51:337–352
    [Google Scholar]
  5. Churms S. C. 1970; Gel chromatography of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry 25:13–51
    [Google Scholar]
  6. Clamp J. R. 1974; Analysis of glycoproteins. Biochemical Society Symposia 40:3–16
    [Google Scholar]
  7. De Clerck J. 1957 Textbook of Brewing 1 p. 302 London: Chapman & Hall;
    [Google Scholar]
  8. Davis E. N., Rhodes R. A., Shulke H. R. 1965; Fermentative production of exocellular glucans by fleshy fungi. Applied Microbiology 13:267–271
    [Google Scholar]
  9. Devor A. W. 1950; Carbohydrate tests using sulphonated α-naphthol. Journal of the American Chemical Society 72:2008–2012
    [Google Scholar]
  10. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for the determination of sugars. Analytical Chemistry 28:350–356
    [Google Scholar]
  11. Feather M. S., Malek A. 1972; A highly branched exocellular d-glucan from Monilinia fructicola . Biochimica et biophysica acta 264:103–105
    [Google Scholar]
  12. Fincher G. B., Stone B. A. 1974; A water-soluble arabinogalactan-peptide from wheat endosperm. Australian Journal of Biological Sciences 27:117–132
    [Google Scholar]
  13. Fleet G. H., Manners D. J. 1975; Gel chromatography of polysaccharides. Biochemical Society Transactions 3:981–983
    [Google Scholar]
  14. Fraser C. G., Jennings H. J. 1971; A glucan from Tremella mesenterica nrrl-y6158 . Canadian Journal of Chemistry 49:1804–1807
    [Google Scholar]
  15. Goatley J. L. 1968; Production of exocellular polysaccharides by Alternaria solani . Canadian Journal of Microbiology 14:1063–1068
    [Google Scholar]
  16. Goldstein I. J., Hollerman C. E., Merrick J. M. 1965; Protein-carbohydrate interaction. 1. The interaction of polysaccharides with concanavalin A. Biochimica et biophysica acta 97:68–76
    [Google Scholar]
  17. Gorin P. A. J., Everleigh D. E. 1970; Extracellular 2-acetamido-2-deoxy-d-galacto-d-galactan from Aspergillus nidulans . Biochemistry 9:5023–5027
    [Google Scholar]
  18. Gorin P. A. J., Spencer J. F. T. 1968; Structural chemistry of fungal polysaccharides. Advances in Carbohydrate Chemistry 23:367–417
    [Google Scholar]
  19. Granath K. A., Kvist B. E. 1967; Molecular weight distribution analysis by gel chromatography on Sephadex. Journal of Chromatography 28:69–81
    [Google Scholar]
  20. Hughes K. W., Clamp J. R. 1972; Use of gas chromatography in periodate oxidation studies of glycopeptides and related materials. Biochimica et biophysica acta 264:418–425
    [Google Scholar]
  21. Lis H., Sharon N. 1973; The biochemistry of plant lectins (phytohaemagglutinins). Annual Review of Biochemistry 42:541–574
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Marshall J. J. 1974; Application of enzymic methods to the structural analysis of polysaccharides. Part I. Advances in Carbohydrate Chemistry and Biochemistry 30:257–370
    [Google Scholar]
  24. Medcalf D. G., D’Appolonia B. L., Gilles K. A. 1968; Comparison of chemical composition and properties between hard red spring and durum wheat endosperm pentosans. Cereal Chemistry 45:539–549
    [Google Scholar]
  25. Nakanishi I., Kimura K., Kusui S., Yamazaki E. 1974; Complex formation of gel-forming bacterial (1→3)-β-d-glucans (curdlan-type polysaccharides) with dyes in aqueous solution. Carbohydrate Research 32:47–52
    [Google Scholar]
  26. Pearse A. G. E. 1968 Histochemistry, Theoretical and Applied, 3rd edn. 1 London: Churchill;
    [Google Scholar]
  27. Putman E. W., Potter A. L., Hodgson R., Hassid W. Z. 1950; The structure of crown gall polysaccharide I. Journal of the American Chemical Society 72:5024–5026
    [Google Scholar]
  28. Reiss J. 1971; Cytochemical detection of a layer of mucilage around the hyphae of Cercosporella herpotrichoides . Transactions of the British Mycological Society 56:481–482
    [Google Scholar]
  29. Robrish S. A., Reid W., Krichevsky M. I. 1972; Distribution of enzymes forming polysaccharide from sucrose and the composition of extracellular polysaccharide synthesized by Streptococcus mutans . Applied Microbiology 24:184–190
    [Google Scholar]
  30. Shah R. H., Loewus F. 1967; Synthesis of methyl d-galacturonate from d-galactose or d-galacturonic acid: preparation of methyl-14C d-galacturonate using methyl-14C iodide. Carbohydrate Research 4:401–407
    [Google Scholar]
  31. So L. L., Goldstein I. J. 1967; Protein-carbohydrate interaction. IX. Application of the quantitative hapten inhibition technique to polysaccharide-concanavalin A interaction. Some comments on the forces involved in concanavalin A-polysaccharide interaction. Journal of Immunology 99:158–163
    [Google Scholar]
  32. Szaniszlo P. J., Wirsen C., Mitchell R. 1968; Production of a capsular polysaccharide by a marine filamentous fungus. Journal of Bacteriology 96:1474–1483
    [Google Scholar]
  33. Tanner M. J. A., Anstee D. J. 1976; The membrane changes in En(a) human erythrocytes: absence of the major erythrocyte sialoglycoprotein. Biochemical Journal 153:271–277
    [Google Scholar]
  34. Thomas R. C. 1930; Composition of fungus hyphae. II.Sclerotinia . American Journal of Botany 17:779–788
    [Google Scholar]
  35. Trevelyan W. E., Procter D. P., Harrison J. S. 1950; Detection of sugars on paper chromatograms. Nature; London: 166:444
    [Google Scholar]
  36. Wallen L. L., Rhodes R. A., Shulke H. R. 1965; Physical properties and chemical composition of β-glucans from fleshy fungi. Applied Microbiology 13:272–278
    [Google Scholar]
  37. Watson P. R., Sandford P. A., Burton K. A., Cadmus M. C., Jeanes A. 1976; An extracellular fungal polysaccharide composed of 2-acetamido-2-deoxy-d-glucuronic acid residues. Carbohydrate Research 46:259–265
    [Google Scholar]
  38. Whistler R. L., Bushway A. A., Singh P. P. 1976; Non-cytotoxic, antitumour polysaccharides. Advances in Carbohydrate Chemistry and Biochemistry 32:235–275
    [Google Scholar]
  39. Willetts H. J. 1971; The survival of fungal sclerotia under adverse environmental conditions. Biological Reviews 46:387–407
    [Google Scholar]
  40. Willetts H. J. 1972; The morphogenesis and possible evolutionary origins of fungal sclerotia. Biological Reviews 47:515–536
    [Google Scholar]
  41. Yang J. T. 1961; The viscosity of macromolecules in relation to molecular conformation. Advances in Protein Chemistry 16:323–400
    [Google Scholar]
  42. Zajic J. E., Leduy A. 1973; Flocculant and chemical properties of a polysaccharide from Pullularia pullulans . Applied Microbiology 25:628–635
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-102-1-157
Loading
/content/journal/micro/10.1099/00221287-102-1-157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error