1887

Abstract

Addition of chemotactic attractant to brought about a transient increase of absorption at 557 nm, compared with absorption at either 543 or 575·5 nm. The increase was tentatively attributed to reduction of cytochrome This reduction was linked to the ability of attractants (and certain other reagents) to make all bacteria in a population swim smoothly, rather than sometimes swimming and sometimes tumbling as they normally do. It is thought to signify a higher energy requirement for swimming since, in tumbling, flagella may tangle and jam, resulting in periods of no energy loss. Cations were required for motility; the function of the cations was probably not to energize motility, since protons alone could do that, but rather to reduce the surface potential of cells and, thus, avoid excess local acidity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-107-2-333
1978-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/107/2/mic-107-2-333.html?itemId=/content/journal/micro/10.1099/00221287-107-2-333&mimeType=html&fmt=ahah

References

  1. Berg H. C., Brown D. A. 1972; Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, London 239:500–504
    [Google Scholar]
  2. Berg H. C., Tedesco P. M. 1975; Transient response to chemotactic stimuli in Escherichia coli. Proeedings of the National Academy of Sciences of the United States of America 723235–3239
    [Google Scholar]
  3. van der Drift C., de Jong M. H. 1974; Chemotaxis toward amino acids in Bacillus subtilis. Archives of Microbiology 96:83–92
    [Google Scholar]
  4. Goy M. F., Springer M. S., Adler J. 1977; Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proeedings of the National Academy of Sciences of the United States of America 744964–4968
    [Google Scholar]
  5. Harold F. M. 1972; Conservation and transformation of energy by bacterial membranes. Bacteriological Reviews 36:177–230
    [Google Scholar]
  6. Kort E. N., Goy M. F., Larsen S. H., Adler J. 1975; Methylation of a membrane protein involved in bacterial chemotaxis. Proeedings of the National Academy of Sciences of the United States of America 723939–3943
    [Google Scholar]
  7. Larsen S. H., Reader R. W., Kort E. N., Tso W.-W., Adler J. 1974; Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Nature, London 249:74–77
    [Google Scholar]
  8. Leifson E. 1951; Staining, shape and arrangement of bacterial flagella. Journal of Bacteriology 62:377–389
    [Google Scholar]
  9. Macnab R. M. 1977; Bacterial flagella rotating in bundles: a study in helical geometry. Proeedings of the National Academy of Sciences of the United States of America 74221–225
    [Google Scholar]
  10. Macnab R. M., Koshland D. E. Jr 1972; The gradient-sensing mechanism in bacterial chemotaxis. Proeedings of the National Academy of Sciences of the United States of America 692509–2512
    [Google Scholar]
  11. Macnab R. M., Ornston M. K. 1977; Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. Journal of Molecular Biology 112:1–30
    [Google Scholar]
  12. Manson M. D., Tedesco P., Berg H. C., Harold F. M., van der Drift C. 1977; A proton-motive force drives bacterial flagella. Proeedings of the National Academy of Sciences of the United States of America 743060–3064
    [Google Scholar]
  13. Martinez R. J., Ichiki A. T., Lundh N. P., Tronick S. R. 1968; A single amino acid substitution responsible for altered flagellar morphology. Journal of Molecular Biology 34:559–564
    [Google Scholar]
  14. Matsuura S., Shioi J., Imae Y. 1977; Motility in Bacillus subtilis driven by an artificial proton-motive force. FEBS Letters 82:187–190
    [Google Scholar]
  15. McLaughlin S. 1977; Electrostatic potentials at membrane-solution interfaces. In Current Topics in Membranes and Transport71–144 Bronner F., Kleinzeller A. New York: Academic Press;
    [Google Scholar]
  16. Miller J. B., Koshland D. E. Jr 1977; Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proeedings of the National Academy of Sciences of the United States of America 744752–4756
    [Google Scholar]
  17. Ordal G. W. 1976a; Control of tumbling in bacterial chemotaxis by divalent cation. Journal of Bacteriology 126:706–711
    [Google Scholar]
  18. Ordal G. W. 1976b; Effect of methionine on chemotaxis by Bacillus subtilis. Journal of Bacteriology 125:1005–1012
    [Google Scholar]
  19. Ordal G. W. 1977; Calcium ion regulates chemotactic behaviour in bacteria. Nature, London 270:66–67
    [Google Scholar]
  20. Ordal G. W., Adler J. 1974; Isolation and complementation of mutants in galactose taxis and transport. Journal of Bacteriology 111:509–516
    [Google Scholar]
  21. Ordal G. W., Fields R. B. 1977; A biochemical mechanism for bacterial chemotaxis. Journal of Theoretical Biology 68:491–500
    [Google Scholar]
  22. Ordal G. W., Goldman D. J. 1975; Chemotaxis away from uncouplers of oxidative phos-phorylation in Bacillus subtilis. Science 189:802–805
    [Google Scholar]
  23. Ordal G. W., Goldman D. J. 1976; Chemotaxis repellents of Bacillus subtilis. Journal of Molecular Biology 100:103–108
    [Google Scholar]
  24. Ordal G. W., Villani D. P., Gibson K. J. 1977; Amino acid chemoreceptors of Bacillus subtilis. Journal of Bacteriology 129:156–165
    [Google Scholar]
  25. Ordal G. W., Villani D. P., Nicholas R. A., Hamel F. G. 1978; Independence of proline chemotaxis and transport in Bacillus subtilis. Journal of Biological Chemistry (in the Press)
    [Google Scholar]
  26. Rosen B. P., McClees J. 1974; Active transport of calcium in inverted membrane vesicles of Escherichia coli. Proeedings of the National Academy of Sciences of the United States of America 715042–5046
    [Google Scholar]
  27. Silverman M., Simon M. 1974; Flagellar rotation and the mechanism of bacterial motility. Nature, London 249:73–74
    [Google Scholar]
  28. Springer M. S., Goy M. F., Adler J. 1977; Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proeedings of the National Academy of Sciences of the United States of America 743312–3316
    [Google Scholar]
  29. Tsang N., Macnab R. M., Koshland D. E. Jr 1973; Common mechanisms for repellents and attractants in bacterial chemotaxis. Science 181:60–63
    [Google Scholar]
  30. Weber M. M., Broadbent D. A. 1975; Electron transport in membranes from spores and from vegetative and mother cells of Bacillus subtilis. In Spores VI411–417 Gerhardt P., Costilow R., Sadoff H. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  31. Wilson D. F., Erecinska M., Owen C. S., Mela L. 1974; Thermodynamic relationships in mitochondrial oxidative phosphorylation and respiratory control. In Dynamics of Energy-Transducing Membranes221–231 Ernster L., Estabrook R., Slater E. Elsevier; Amsterdam:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-107-2-333
Loading
/content/journal/micro/10.1099/00221287-107-2-333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error