1887

Abstract

SUMMARY: Ubiquinone was extracted from free-living , grown aerobically or anaerobically, and from the symbiotic bacteroid form; it was tentatively identified as the Q-10 homologue. The ubiquinone concentration was highest in symbiotically grown but the ratio ubiquinone:total cytochrome was about 1·5:1 in membrane particles from organisms grown under all three conditions. The ubiquinone was reduced 75% by NADH, completely oxidized by oxygen but not oxidized by nitrate. NADH oxidase activity and nitrate reductase activity in membrane particles from organisms grown under the different conditions were similar except that nitrate reductase activity was low in aerobically grown organisms. It is concluded that ubiquinone functions in electron transport to oxygen but not to nitrate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-110-2-333
1979-02-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/110/2/mic-110-2-333.html?itemId=/content/journal/micro/10.1099/00221287-110-2-333&mimeType=html&fmt=ahah

References

  1. Appleby C. A. 1960; The oxygen equilibrium of leghaemoglobin. Biochi mica et biophysica acta 60:226–235
    [Google Scholar]
  2. Appleby C. A. 1969a); Electron transport systems of Rhizobium japonicum. I. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids from N2-fixing root nodules. Biochimica et biophysica acta 172:71–87
    [Google Scholar]
  3. Appleby C. A. 1969b; Electron transport systems of Rhizobium japonicum. II. Rhizobium haemoglobin, cytochromes and oxidases in free-living (cultured) cells. Biochimica et biophysica acta 172:88–105
    [Google Scholar]
  4. Appleby C. A. 1974; Leghaemoglobin.. In The Biology of Nitrogen Fixation, pp. 521–554 Edited by Quispel A. Amsterdam: North Holland;
    [Google Scholar]
  5. Appleby C. A., Bergersen F. J. 1958; Cytochromes of Rhizobium. Nature, London 182:1174
    [Google Scholar]
  6. Appleby C. A., Daniel R. M. 1973; Rhizobium cytochrome P-450: a family of soluble separable haemoproteins.. In Oxidases and Related Redox Systems, pp, 515–526 Edited by King T. E., Mason H. S., Morrison M. Baltimore: University Park Press;
    [Google Scholar]
  7. Cheniae G., Evans H. J. 1959; Properties of a particulate nitrate reductase from the nodules of the soybean plant. Biochimica et biophysica acta 35:140–153
    [Google Scholar]
  8. Cheniae G., Evans H. J. 1960; Physiological studies on nodule nitrate reductase. Plant Physiology 35:454–462
    [Google Scholar]
  9. Cox C. B., Newton N. A., Gibson F., Snoswell A. M., Hamilton J. A. 1970; The function of ubiquinone in Escherichia coli. Biochemical Journal 117:551–562
    [Google Scholar]
  10. Crane F. L., Hatefi Y., Lester R. L., Widmer C. 1957; Isolation of a quinone from beef heart mitochondria. Biochimica et biophysica acta 25:220–221
    [Google Scholar]
  11. Daniel R. M. 1970; The electron transport system of Acetobacter suboxydans with particular reference to cytochrome o. Biochimica et biophysica acta 216:328–341
    [Google Scholar]
  12. Daniel R. M., Appleby C. A. 1972; Anaerobicnitrate, symbiotic and aerobic growth of Rhizobium japonicum: effects on cytochrome P-450, other haemoproteins, nitrate and nitrite reductases. Biochimica et biophysica acta 275:347–354
    [Google Scholar]
  13. Daniel R. M., Gray J. 1976; Nitrate reductase from anaerobically grown Rhizobium japonicum. Journal of General Microbiology 96:247–251
    [Google Scholar]
  14. Enoch H. G., Lester R. L. 1974; The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vivo reconstruction of formate-nitrate reductase activity of E. coli. Biochemical and Biophysical Research Communications 61:1234–1241
    [Google Scholar]
  15. Erickson S. K., Parker G. L. 1969; The electron transport system of Micrococcus luteus (Sarcina lutea). Biochimica et biophysica acta 180:56–62
    [Google Scholar]
  16. Evans H. J. 1954; Diphosphopyridine nucleotidenitrate reductase from soybean nodules. Plant Physiology 29:298–301
    [Google Scholar]
  17. Hollander R. 1976; Correlation of the function of dimethylmenaquinone in bacterial electron transport with its redox potential. FEBS Letters 72:98–100
    [Google Scholar]
  18. Itagaki E. 1964; The role of lipophilic quinones in the electron transport system of Escherichia coli. Journal of Biochemistry 55:432–445
    [Google Scholar]
  19. Jones C. W., Redfearn E. R. 1966; Electron transport in Azotobacter vinelandii. Biochimica et biophysica acta 113:467–481
    [Google Scholar]
  20. Kennedy I. R., Rigaud J., Trinchant J. C. 1975; Nitrate reductase from bacteroids of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation. Biochimica et biophysica acta 397:24–35
    [Google Scholar]
  21. King M. T., Drews B. 1975; The respiratory electron transport system of heterotrophically- grown Rhodopseudomonas palustris. Archives of Microbiology 102:219–231
    [Google Scholar]
  22. Knook D. L., Planta R. J. 1971a; Function of ubiquinone in electron transport from reduced nicotinamide adenine dinucleotide to nitrate and oxygen in Aerobacter aerogenes. Journal of Bacteriology 105:483–488
    [Google Scholar]
  23. Knook D. L., Planta R. J. 1971b; Restoration of electron transport in ultra-violet irradiated membranes of Aerobacter aerogenes. FEBS Letters 14:54–56
    [Google Scholar]
  24. Knowles C. J., Redfearn E. R. 1968; The effect of combined nitrogen sources on the synthesis and function of the electron transport system of Azotobacter vinelandii. Biochimica et biophysica acta 162:248–355
    [Google Scholar]
  25. Knowles C. J., Daniel R. M., Erickson S. K., Redfearn E. R. 1967; Inhibition of bacterial respiration by piericidin A and rotenone. Biochemical Journal 106:49
    [Google Scholar]
  26. Kroger A., Dadak D., Klingenberg M., Diemer F. 1971; On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri. European Journal of Biochemistry 21:322–333
    [Google Scholar]
  27. Lester R. L., Fleischer S. 1961; Studies on the electron transport system. XXVII. The respiratory activity of acetone-extracted beef heart mitochondria. Role of coenzyme Q and other lipids. Biochimica et biophysica acta 47:358–369
    [Google Scholar]
  28. Lowe R. H., Evans H. J. 1964; Preparation and some properties of a soluble nitrate reductase from Rhizobium japonicum. Biochimica et biophysica acta 85:377–389
    [Google Scholar]
  29. Newton N. A., Cox G. B., Gibson F. 1971; The function of menaquinone vitamin (K2) in Escherichia coli K12. Biochimica et biophysica acta 244:155–166
    [Google Scholar]
  30. Probst I., Schlegel H. G. 1976; Respiratory components and oxidase activities in Alcaligenes eutrophus. Biochimica et biophysica acta 440:412–428
    [Google Scholar]
  31. Pumphrey A. M., Redfearn E. R. 1960; A method for determining the concentration of ubiquinone in mitochondrial preparations. Biochemical Journal 76:61–64
    [Google Scholar]
  32. Redfearn E. R., Pumphrey A. M. 1958; The reactivation of the succinate-cytochrome c reductase of a heart muscle preparation extracted with isooctane. Biochimica et biophysica acta 30:437–442
    [Google Scholar]
  33. Rigaud J., Bergersen F. J., Turner G. L., Daniel R. M. 1973; Nitrate-dependent anaerobic acetylene-reduction and nitrogen-fixation by soybean bacteroids. Journal of General Microbiology 77:137–144
    [Google Scholar]
  34. Tuzimura K., Watanabe I. 1964; Electron transport systems of Rhizobium grown in nodules and laboratory medium. Plant and Cell Physiology 5:157–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-110-2-333
Loading
/content/journal/micro/10.1099/00221287-110-2-333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error