1887

Abstract

The mode of action of berninamycin on bacterial protein synthesis is related to that of thiostrepton, a dissimilar compound. Both antibiotics bind to the complex of 23S RNA with protein L11 and both affect various functions of the ribosomal A site. Also, and (which, respectively, produce berninamycin and thiostrepton) possess similar ribosomal RNA methylases capable of rendering ribosomes resistant to these compounds. Resistance involves specific pentose-methylation of 23S ribosomal RNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-4-875
1982-04-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/4/mic-128-4-875.html?itemId=/content/journal/micro/10.1099/00221287-128-4-875&mimeType=html&fmt=ahah

References

  1. Bergy M. E., Coats J. H., Reusser F. 1972; Antibiotic beminamycin. Chemical Abstracts 77: 150582v. (US Patent 3689639.)
    [Google Scholar]
  2. Bycroft B. W., Gowland M. S. 1978; The structures of the highly modified peptide antibiotics micrococcin P1 and P2. Journal of the Chemical Society, Chemical Communications256–258
    [Google Scholar]
  3. Cundliffe E. 1978; Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus. Nature; London: 272792–795
    [Google Scholar]
  4. Cundliffe E., Thompson J. 1979; Ribose methylation and resistance to thiostrepton. Nature; London: 278859–861
    [Google Scholar]
  5. Cundliffe E., Thompson J. 1981a; Concerning the mode of action of micrococcin upon bacterial protein synthesis. European Journal of Biochemistry 118:47–52
    [Google Scholar]
  6. Cundliffe E., Thompson J. 1981b; The mode of action of nosiheptide (multhiomycin) and the mechanism of resistance in the producing organism. Journal of General Microbiology 126:185–192
    [Google Scholar]
  7. Cundliffe E., Dixon P., Stark M., StÖffler G., Ehrlich R., StÖffler-Meilicke M., Cannon M. 1979; Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50S subunit protein. Journal of Molecular Biology 132:235–252
    [Google Scholar]
  8. Dijk J., Littlechild J. 1979; Purification of ribosomal proteins from Escherichia coli under non-denaturing conditions. Methods in Enzymology 59:481–502
    [Google Scholar]
  9. Dixon P. D., Beven J. E., Cundliffe E. 1975; Properties of the ribosomes of antibiotic producers: effects of thiostrepton and micrococcin on the organisms which produce them. Antimicrobial Agents and Chemotherapy 7:850–855
    [Google Scholar]
  10. Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H., Waring M. J. 1981 Molecular Basis of Antibiotic Action, 2nd edn. ch. 6 pp. 402–547 Chichester & New York:: John Wiley.;
    [Google Scholar]
  11. Liesch J. M., Rinehart K. L. Jr 1977; Beminamycin. 3. Total structure of beminamycin A 1,2. Journal of the American Chemical Society 99:1645–1646
    [Google Scholar]
  12. Modolell J., Vazquez D., Monro R. E. 1971; Ribosomes, G-factor and siomycin. Nature New Biology 230:109–112
    [Google Scholar]
  13. Pedersen F. S., Lund E., Kjeldgaard N. O. 1973; Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nature New Biology 243:13–15
    [Google Scholar]
  14. Pestka S. 1970; Thiostrepton: a ribosomal inhibitor of translocation. Biochemical and Biophysical Research Communications 40:667–674
    [Google Scholar]
  15. Prange T., Ducruix A., Pascard C., Lunel J. 1977; Structure of nosiheptide, a polythiazole-containing antibiotic. Nature; London: 265189–190
    [Google Scholar]
  16. Reusser F. 1969; Mode of action of beminamycin. An inhibitor of protein biosynthesis. Biochemistry 8:3303–3308
    [Google Scholar]
  17. Stark M., Cundliffe E. 1979a; On the biological role of ribosomal protein BM-L11 of Bacillus megaterium, homologous with Escherichia coli ribosomal protein L11. Journal of Molecular Biology 134:767–779
    [Google Scholar]
  18. Stark M., Cundliffe E. 1979b; Requirement for ribosomal protein BM-L11 in stringent control of RNA synthesis in Bacillus megaterium. European Journal of Biochemistry 102:101–105
    [Google Scholar]
  19. Stark M. J. R., Cundliffe E., Duk J., StÖffler G. 1980; Functional homology between Escherichia coli ribosomal protein L11 and Bacillus megaterium protein BM-L11. Molecular and General Genetics 180:11–15
    [Google Scholar]
  20. Thompson C. J., Ward J. M., Hopwood D. A. 1980; DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature; London: 286525–527
    [Google Scholar]
  21. Thompson J., Cundliffe E. 1980; Resistance to thiostrepton, siomycin and sporangiomycin in actinomycetes that produce them. Journal of Bacteriology 142:455–461
    [Google Scholar]
  22. Thompson J., Cundliffe E. 1981; Purification and properties of an RNA methylase produced by Streptomyces azureus and involved in resistance to thiostrepton. Journal of General Microbiology 124:291–297
    [Google Scholar]
  23. Thompson J., Cundliffe E., Stark M. 1979; Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein L11. European Journal of Biochemistry 98:261–265
    [Google Scholar]
  24. Tori K., Tokura K., Yoshimura Y., Terui Y., Okabe K., Otsuka H., Matsushita K., Inagaki F., Miyazawa T. 1981; Structures of siomycin-B and-C and thiostrepton-B determined by NMR spectroscopy and carbon-13 signal assignments of siomycins, thiostreptons and thiopeptin-Ba. Journal of Antibiotics 34:124–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-4-875
Loading
/content/journal/micro/10.1099/00221287-128-4-875
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error