1887

Abstract

Pool sizes, turnover times and turnover rates of ethanol and acetate in anoxic sediments of Lake Mendota and Knaack Lake and in anoxic sewage digestor sludge were determined by gas chromatography-gas proportional counting techniques. Ethanol accounted for 6, 14 and 2·5% of the total carbon flux to methane in these environments, respectively. The distribution of labelled carbon in the methane and carbon dioxide fractions obtained during incubation of the anoxic materials with C-1 and C-2 labelled acetate and ethanol revealed a significantly higher degree of randomization with ethanol than with acetate tracers. HPLC analysis of sediment pore water preparations revealed that labelled acetate and propionate were formed as intermediates of labelled ethanol degradation, whereas no labelled butyrate was detected. Addition of hydrogen to Knaack Lake sediment samples inhibited ethanol degradation drastically and led to a significant accumulation of labelled butyrate. The above findings together with the results of most probable number enumerations of anaerobic ethanol-degrading bacteria indicate that propionate-forming bacteria contributed significantly to ethanol degradation in Knaack Lake sediment and in sewage sludge.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-3-651
1985-03-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/3/mic-131-3-651.html?itemId=/content/journal/micro/10.1099/00221287-131-3-651&mimeType=html&fmt=ahah

References

  1. American Public Health Association 1969 Standard Methods for the Examination of Wastes and Wastewater Including Bottom Sediments and Sludge604–609 New York: American Public Health Association;
    [Google Scholar]
  2. Barker H. A. 1936; On the biochemistry of the methane fermentation. Archives of Microbiology 7:404–419
    [Google Scholar]
  3. Barker H. A. 1937; The production of caproic and butyric acids by the methane fermentation of ethyl alcohol. Archives of Microbiology 8:416–421
    [Google Scholar]
  4. Bornstein B. T., Barker H. A. 1948; The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. Journal of Biological Chemistry 172:659–669
    [Google Scholar]
  5. Braun K., Gottschalk G. 1981; Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum . Archives of Microbiology 128:294–298
    [Google Scholar]
  6. Braun M., Mayer F., Gottschalk G. 1981; Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Archives of Microbiology 128:288–293
    [Google Scholar]
  7. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S. 1967; Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archives of Microbiology 59:20–31
    [Google Scholar]
  8. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R. 1977; Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology 33:1162–1169
    [Google Scholar]
  9. Buswell A. M., Sollo F. W. 1948; The mechanism of methane fermentation. Journal of the American Chemical Society 70:1778–1780
    [Google Scholar]
  10. Eichler B., Schink B. 1984; Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Archives of Micro-biology (in the Press)
    [Google Scholar]
  11. Iannotti E. T., Kafkewitz D., Wolin M. J., Bryant M. P. 1973; Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2 . Journal of Bacteriology 114:1231–1240
    [Google Scholar]
  12. Ingvorsen K., Zeikus J. G., Brock T. D. 1981; Dynamics of bacterial sulfate reduction in a eutro-phic lake. Applied and Environmental Microbiology 42:1029–1036
    [Google Scholar]
  13. Kaspar H. F., Wuhrmann K. 1978; Product inhibition in sludge digestion. Microbial Ecology 4:241–248
    [Google Scholar]
  14. Koch M., Dolfing J., Wuhrmann K., Zehnder A. J. B. 1983; Pathways of propionate degradation by enriched methanogenic cultures. Applied and Environmental Microbiology 45:1411–1414
    [Google Scholar]
  15. Krzycki J. A., Wolkin R. H., Zeikus J. G. 1982; Comparison of unitrophic and mixotrophic sub-strate metabolism by an acetate-adapted strain of Methanosarcina barkeri . Journal of Bacteriology 149:247–254
    [Google Scholar]
  16. Laanbroek H. J., Abee T., Voogd J. L. 1982; Alcohol conversions by Delsulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Archives of Microbiology 133:178–184
    [Google Scholar]
  17. Lovley D. R., Klug M. J. 1982; Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Applied and Environmental Microbiology 43:552–560
    [Google Scholar]
  18. McInerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Archives of Microbiology 122:129–135
    [Google Scholar]
  19. Phelps T. J., Zeikus J. G. 1984; Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Applied and Environmental Microbiology (in the Press)
    [Google Scholar]
  20. Postgate J. R. 1979 The Sulphate-reducing Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  21. Reddy C. A., Bryant M. P., Wolin M. J. 1972; Characteristics of S organism isolated from Methanobacillus omelianskii . Journal of Bacteriology 109:539–545
    [Google Scholar]
  22. Samain E., Albaniac G., Dubourgier H. C., Touzel J. P. 1982; Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor dependent association with a Gram-negative homoacetogen. FEMS Microbiology Letters 15:69–74
    [Google Scholar]
  23. Schink B. 1984; Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and evidence for propionate formation from C2 compounds. Archives of Microbiology 137:33–41
    [Google Scholar]
  24. Schink B. 1985; Mechanism and kinetics of succi-nate and propionate degradation in anoxic freshwater sediments and sewage sludge. Journal of General Microbiology 131:643–650
    [Google Scholar]
  25. Schink B., Zeikus J. G. 1982; Microbial ecology of pectin decomposition in anoxic lake sediments. Journal of General Microbiology 128:393–404
    [Google Scholar]
  26. Stams A. J. M., Kremer D. R., Nicolay K., Wenk G. H., Hansen T. A. 1984; Pathway of propionate formation in Desulfobulbus propionicus . Archives of Microbiology 139:167–173
    [Google Scholar]
  27. Tewes F. J., Thauer R. K. 1980; Regulation of ATP-synthesis in glucose fermenting bacteria involved in interspecies hydrogen transfer. In Anaerobes and Anaerobic Infections Gottschalk G., Pfennig N., Werner H. Stuttgart & New York: G. Fischer Verlag;
    [Google Scholar]
  28. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180
    [Google Scholar]
  29. Weimer P. J., Zeikus J. G. 1977; Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum . Applied and Environmental Microbiology 33:289–297
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Archives of Microbiology 129:395–400
    [Google Scholar]
  31. Wolfe R. S. 1980; Respiration in methanogenic bacteria. In Diversity of Bacterial Respiratory Systems 1161–186 Knowles C. J. Boca Raton, Florida: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-3-651
Loading
/content/journal/micro/10.1099/00221287-131-3-651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error