1887

Abstract

Sheared polar flagella of the type strains of monotrichate and multitrichate . and . were purified and the sedimentation coefficients of the corresponding flagellins determined by ultracentrifugation; from these values the approximate molecular weights of the major flagellins were calculated to be between 38000 and 43000, and other estimates based on methionine content also suggested that the range was between 38800 and 43000. Purified flagellins of these three species, and also . pv. and sp. (‘’), were digested with trypsin, and the peptide maps obtained after two-dimensional electrophoresis were compared. Altogether 65 peptide spots were delineated and 15 peptides were found to be common to all five species. The amino acid composition of the purified flagellins of the three type species was found to accord qualitatively and quantitatively with other prokaryote flagellins. Antisera were raised against the three purified flagellins, and tested by the Ouchterlony diffusion plate method against () purified homologous and heterologous flagellins, () deflagellated cells with sheared flagella and () crude sheared flagella of a further 67 test strains and species (mainly ). With either flagella or flagellin antigens the serological reactions were virtually identical, but not all strains of a given species reacted with the relevant antiflagellin antiserum. Rapid species identification using a single antiflagellin antiserum was thus not possible. The flagellar location of the antigenic site(s) was confirmed by two serological methods, including direct immunofluorescent serology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-4-873
1985-04-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/4/mic-131-4-873.html?itemId=/content/journal/micro/10.1099/00221287-131-4-873&mimeType=html&fmt=ahah

References

  1. Ada G. L., Nossall G. J. V., Pye J., Abbott A. 1964; Antigens in immunity. I: Preparation and properties of flagella antigens from Salmonella adelaide . Australian Journal of Experimental Biology and Medical Science 42:267–282
    [Google Scholar]
  2. Ambler R. P., Rees M. W. 1959; Σ-N-Methyl lysine in bacterial flagellar protein. Nature London: 18456–57
    [Google Scholar]
  3. Ansorg R. 1978; Flagellaspezifisches H-Antigen-schema von Pseudomonas aeruginosa . Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I)A242228–238
    [Google Scholar]
  4. Carver M., Joseph F., Brown F. C. 1953; An arginine histochemical method using Sakaguchi’s new reagent. Stain Technology 28:89–91
    [Google Scholar]
  5. Chart H. 1983; Multiflagellate variants of Vibrio anguillarum . Journal of General Microbiology 129:2193–2197
    [Google Scholar]
  6. DeLange R. J., Chang J. W., Shaper J. H., Glazer A. N. 1976; Amino acid sequence of flagellin of Bacillus subtilis 168. Journal of Biological Chemistry 251:705–711
    [Google Scholar]
  7. Emerson S. U., Simon M.I. 1971; Variation in the primary structure of Bacillus subtilis flagellins. Journal of Bacteriology 106:949–954
    [Google Scholar]
  8. Enomoto M., Iino T. 1966; Comparison of normal and curly flagella in S abortus-equi by two-dimensional separation of peptides. Japanese Journal of Genetics 44:131–139
    [Google Scholar]
  9. Erlander S. R., Koffler H., Foster J. F. 1960; Physical properties of Proteus vulgaris flagellin . Archives of Biochemistry and Biophysics 90:139–153
    [Google Scholar]
  10. Gerngross O., Voss K., Herfield H. 1933 Feigl F. 1960 Spot Tests in Organic Analysis, 6th. Amsterdam: Elsevier Publishing Company;
    [Google Scholar]
  11. Gill P. R., Agabian N. 1982; A comparative structural analysis of the flagellin monomers of Caulobacter crescentus indicates that these proteins are encoded by two genes. Journal of Bacteriology 150:925–933
    [Google Scholar]
  12. Guffanti A. A., Eisenstein H. C. 1983; Purification and characterization of flagella from the alkalophile Bacillus firmus RAB. Journal of General Microbiology 129:3239–3242
    [Google Scholar]
  13. Holder I. A., Wheeler R., Montie T. C. 1982; Flagellar preparations from Pseudomonas aeruginosa: animal protection studies . Infection and Immunity 35:276–280
    [Google Scholar]
  14. Homma M., Kutsukake K., Ilno T., Yamaguchi S. 1984; Hook-associated proteins essential for flagellar filament formation in Salmonella typhimur-ium . Journal of Bacteriology 157:100–108
    [Google Scholar]
  15. Hopkins F. G., Cole S.W. 1901; Detection of tryptophan. Journal of Physiology 27:427
    [Google Scholar]
  16. Ikeda T., Kamiya R., Yamaguchi S. 1983; Excretion of flagellin by a short-flagella mutant of Salmonella tvphimurium . Journal of Bacteriology 153:506–510
    [Google Scholar]
  17. Ikeda T., Kamiya R., Yamaguchi S. 1984; In vitro polymerization by a short-flagellum Salmonella tvphimurium mutant . Journal of Bacteriology 159:787–789
    [Google Scholar]
  18. Jessen O. 1965; Pseudomonas aeruginosa and other Green Fluorescent Pseudomonads . A Taxonomic Study Copenhagen: Munksgaard.;
    [Google Scholar]
  19. Johnson R., C, Ferber D. M., Ely B. 1983; Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants. Journal of Bacteriology 154:1137–1144
    [Google Scholar]
  20. Kagawa H., Owaribe K., Asakura S., Takahashi N. 1976; Flagellar hook protein from Salmonella SJ25. Journal of Bacteriology 125:68–73
    [Google Scholar]
  21. Kelman A., Hruschka J. 1973; The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum . Journal of General Microbiology 76:177–188
    [Google Scholar]
  22. King E. J. 1932; The colorimetric determination of phosphorus. Biochemical Journal 26:292–297
    [Google Scholar]
  23. Kobayaishi T., RiNker J. N., Koffler H. 1959; Purification and chemical properties of flagellin. Archives of Biochemistry and Biophysics 84:342–362
    [Google Scholar]
  24. Kurado H. 1972; Polymerisation of Salmonella, Proteus and Bacillus flagellins in vitro . Biochimica et biophysica acta 285:253–267
    [Google Scholar]
  25. Lagenaur C., Agabian N. 1977; Caulobacter flagellins. Journal of Bacteriology 132:731–733
    [Google Scholar]
  26. Lányi B. 1970; Serological properties of Pseudomonas aeruginosa. II. Type-specific thermolabile (flagellar) antigens. Acta microbiologica Academiae scientarum hungaricae 17:35–48
    [Google Scholar]
  27. Lányi J., Bergan T. 1978; Serological characterization of Pseudomonas aeruginosa . Methods in Microbiology 10:93–168
    [Google Scholar]
  28. Lowry J., Hanson J. 1965; Electron microscope studies of bacterial flagella. Journal of Molecular Biology 11:293–313
    [Google Scholar]
  29. McDonough M. W. 1965; Amino acid composition of antigenically distinct Salmonella flagella proteins. Journal of Molecular Biology 12:342–355
    [Google Scholar]
  30. Mann T., Leone E. 1953; Studies on the metabolism of semen. 8. Ergothionene as a normal constituent of boar seminal plasma. Purification and crystallization. Site of formation and function. Biochemical Journal 53:140–148
    [Google Scholar]
  31. Martinez R. J., Brown D. M., Glazer A. N. 1967; The formation of bacterial flagella. Ill: Characterization of flagella from. subtilis B., serpens S. Journal of Molecular Biology 28:45–51
    [Google Scholar]
  32. Maruyama M., Lodderstaedt G., Schmitt R. 1978; Purification and biochemical properties of complex flagella isolated from Rhizobium lupini HI3-3. Biochimica et biophysica acta 535:110–124
    [Google Scholar]
  33. Metzger H., Shapiro MB., Mosimann J. E., Vinton J. E. 1968; Assessment of compositional relatedness between proteins. Nature, London 219:1166–1168
    [Google Scholar]
  34. Miles A. A., Misra S. S., Irwin J. O. 1938; The estimation of the bactericidal power of the blood. Journal of Hygiene 38:732–749
    [Google Scholar]
  35. Montie T. C., Craven R. C., Holder I. A. 1982; Flagellar preparations from Pseudomonas aeruginosa: isolation and characterization. Infection and Immunity 35:281–288
    [Google Scholar]
  36. Newell D. G., McBride H., Pearson A. D. 1984; The identification of outer membrane proteins and flagella of Camplyobacter jejuni . Journal of General Microbiology 130:1201–1208
    [Google Scholar]
  37. Panapoulos N. J., Schroth M. N. 1974; Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola . Phytopathology 64:1389–1397
    [Google Scholar]
  38. Paranchych W., Sastry P. A., Frost L. S., Carpenter M., Armstrong G. D., Watts T. H. 1979; Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO. Canadian Journal of Microbiology 25:1175–1181
    [Google Scholar]
  39. Pitt T. L. 1981a; Preparation of agglutinating antisera specific for the flagellar antigens of Pseudomonas aeruginosa . Journal of Medical Microbiology 14:261–270
    [Google Scholar]
  40. Pitt T. L. 1981b; A comparison of flagellar typing and phage typing as means of subdividing the O groups of Pseudomonas aeruginosa . Journal of Medical Microbiology 14:261–270
    [Google Scholar]
  41. Rhodes M. E. 1958; The cytology of Pseudomonas spp. as revealed by a silver-plating staining method. Journal of General Microbiology 18:639–648
    [Google Scholar]
  42. Rowbury R. J., Armitage J. P., King C. 1983; Movement, taxes and cellular interactions in the response of microorganisms to the natural environment. In Microbes in Their Natural Environments299–350 Slater J. H., Whittenbury R., Wimpenny J. W. T. Cambridge: Cambridge University Press.;
    [Google Scholar]
  43. Schalch W., Bode W. 1975; Involvement of tyrosine residues in the protomer-protomer interaction of Proteus mirabilis flagella as studied by spectroscopic methods, chemical modification and aggregation experiments. Biochimica et biophysica acta 405:292–305
    [Google Scholar]
  44. Schmitt R., Bamberger I., Acker G., Mayer F. 1974a; Feinstrukturanalyse der komplexen Geis-seln von Rhizobium lupini HI3-3. Archiv für Mikro-biologie 100:145–162
    [Google Scholar]
  45. Schmitt R., Raska I., Mayer F. 1974b; Plain and complex flagella of Pseudomonas rhodos: analysis of fine structure and composition. Journal of Bacteriology 117:844–857
    [Google Scholar]
  46. Shapiro A. L., Viñuela E., Maizel J. V. 1967; Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications 28:815–820
    [Google Scholar]
  47. Sheffery M., Newton A. 1979; Purification and characterization of a polyhook protein from Caulo bacter crescentus . Journal of Bacteriology 138:575–583
    [Google Scholar]
  48. Shinoda S., Kariyama R., Ogawa M., Takeda Y., Miwatani T. 1976; Flagellar antigens of various species of the genus Vibrio and related genera. International Journal of Systematic Bacteriology 26:97–101
    [Google Scholar]
  49. Simon M. I., Emerson S. U., Shaper J. H., Bernard P. D., Glazer A. N. 1977; Classification of Bacillus subtilis flagellins. Journal of Bacteriology 130:200–204
    [Google Scholar]
  50. Simon M., Silverman M., Matsumura P., Ridgeway H., Komeda Y., Hilmen M. 1978; Structure and function of bacterial flagella. In Relations Between Structure and Function in the Prokaryotic Cell271–283 Stanier R. Y., Rogers H. J., Ward B. J. Cambridge: Cambridge University Press;
    [Google Scholar]
  51. Sneath P. H. A., Collins V. G. 1974; A study in test reproducibility between laboratories. Edited for the Pseudomonas Working Party by Sneath P. H. A., Collins V. G. Antonie van Leeuwenhoek 40481–527
    [Google Scholar]
  52. Snell F. D., Snell C. T. 1953; Colorimetric Methods of Analysis Including Some Turbidimetric and Nephelometric Methods. , 3. New York: Van Nostrand.;
    [Google Scholar]
  53. Stanton T. B., Savage D. C. 1984; Motility as a factor in bowel colonization by Roseburia cecicola, an obligately anaerobic bacterium from the mouse caecum. Journal of General Microbiology 130:173–183
    [Google Scholar]
  54. Suzuki T., lino T. 1980; Isolation and characterization of multiflagellate mutants of Pseudomonas aeruginosa . Journal of Bacteriology 143:1471–1479
    [Google Scholar]
  55. Tsuda M., Iino T. 1983a; Transductional analysis of the flagellar genes in Pseudomonas aeruginosa . Journal of Bacteriology 153:1018–1026
    [Google Scholar]
  56. Tsuda M., Iino T. 1983b; Ordering of the flagellar genes in Pseudomonas aeruginosa by insertions of mercury transposon Tn 501 . Journal of Bacteriology 153:1008–1017
    [Google Scholar]
  57. Urakami T., Komagata K. 1984; Protomonas, a new genus of facultatively methylotrophic bacteria. International Journal of Systematic Bacteriology 34:188–201
    [Google Scholar]
  58. Walker P. D., Batty I., Thomson R. O. 1971; The localization of bacterial antigens by the use of fluorescent and ferritin labelled antibody techniques. Methods in Microbiology 5A:219–247
    [Google Scholar]
  59. Weibull C. 1948; Some chemical and physico-chemical properties of the flagella of Proteus vulgaris . Biochimica et biophysica acta 2:351–361
    [Google Scholar]
  60. Yamaguchi S., Iino T. 1969; Genetic determination of the antigenic specificity of flagellar protein in Salmonella . Journal of General Microbiology 55:9–74
    [Google Scholar]
  61. Young G. C. H., Shrack G. K., Freeman B. A. 1977; Purification of flagellar cores of Vibrio cholerae . Journal of Bacteriology 129:1121–1128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-4-873
Loading
/content/journal/micro/10.1099/00221287-131-4-873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error