1887

Abstract

Summary: (Hildenborough) can grow on acetate plus CO as carbon source with H as the sole source of energy. The capability of sulphate reducers to oxidize H has been proposed as a major factor in the anaerobic corrosion of metals. Utilization by of cathodic hydrogen from a mild steel electrode was demonstrated electrochemically and physiologically. depolarized the metal electrode and growth on acetate under N/CO was dependent on the presence of the electrode. Although the highest corrosion rate was observed under aerobic conditions, significantly increased the corrosion rate under anaerobic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-12-3357
1986-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/12/mic-132-12-3357.html?itemId=/content/journal/micro/10.1099/00221287-132-12-3357&mimeType=html&fmt=ahah

References

  1. Badziong W., Thauer R. K., Zeikus J. G. 1978; Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Archives of Microbiology 116:41–49
    [Google Scholar]
  2. Booth G. H., Tiller A. K. 1960; Polarisation studies of mild steel in cultures of sulphate-reducing bacteria. Transactions of the Faradav Society 56:1689–1696
    [Google Scholar]
  3. Booth G. H., Tiller A. K. 1962; Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 3, halophilic organisms. Transactions of the Faraday Society 58:2510–2516
    [Google Scholar]
  4. Booth G. H., Tiller A. K. 1968; Cathodic characteristics of mild steel in suspensions of sulphate-reducing bacteria. Corrosion Science 8:583–600
    [Google Scholar]
  5. Booth G. H., Wormwell F. 1961; Corrosion of mild steel by sulphate-reducing bacteria. Effect of different strains of organisms. In Proceedings of the First International Congress on Metallic Corrosion pp 341–344 London: Butterworth;
    [Google Scholar]
  6. Booth G. H., Tiller A. K., Wormwell F. 1962; A laboratory study of well-preserved ancient iron nails from apparently corrosive soils. Corrosion Science 2:197–201
    [Google Scholar]
  7. Brandis A., Thauer R. K. 1981; Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. Journal of General Microbiology 126:249–252
    [Google Scholar]
  8. Costello J. A. 1974; Cathodic depolarisation by sulphate-reducing bacteria. South African Journal of Science 70:202–204
    [Google Scholar]
  9. Cragnolino G., Tuovinen O. H. 1984; The role of sulphate-reducing and sulphur-oxidizing bacteria in the localized corrosion of iron-base alloys a review. International Biodeterioration 20:9–26
    [Google Scholar]
  10. Evans S., Koehler E. L. 1961; Use of polarisation methods in the determination of the rate of corrosion of aluminium alloys in anaerobic media. Journal of the Electrochemical Society 108:509–514
    [Google Scholar]
  11. Farrer T. W., Wormwell F. 1953; Corrosion of iron and steel by aqueous suspension of sulphur. Chemistry and Industry 5:106–107
    [Google Scholar]
  12. Gow L. A., Pankhania I. P., Ballantine S. P., Boxer D. H., Hamilton W. A. 1986; Identification of a membrane-bound hydrogenase of Desulfovibrio vulgaris (Hildenborough). Biochimica et biophysica acta 851:57–64
    [Google Scholar]
  13. Hamilton W. A. 1983a; Sulphate-reducing bacteria and the offshore oil industry. Trends in Biotechnology 1:36–40
    [Google Scholar]
  14. Hamilton W. A. 1983b; The sulphate-reducing bacteria: their physiology and consequent ecology. In Microbial Corrosion pp 1–5 London: The Metals Society;
    [Google Scholar]
  15. Hamilton W. A. 1985; Sulphate-reducing bacteria and anaerobic corrosion. Annual Review of Microbiology 39:195–217
    [Google Scholar]
  16. Hardy J. A. 1983; Utilisation of cathodic hydrogen by sulphate-reducing bacteria. British Corrosion Journal 18:190–193
    [Google Scholar]
  17. Hardy J. A., Bown J. L. 1984; The corrosion of mild steel by biogenic sulphide films exposed to air. Corrosion 40:650–654
    [Google Scholar]
  18. Iverson W. P. 1968; Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans . Nature, London 217:1265–1267
    [Google Scholar]
  19. Iverson W. P. 1981; An overview of the anaerobic corrosion of underground metallic structures, evidence for a new mechanism. In Underground Corrosion pp 33–52 Edited by Escalante E. Tech. Pub. no. 741 American Society for Testing Materials; Philadelphia:
    [Google Scholar]
  20. Iverson W. P., Olson G. J. 1984; Problems related to sulphate-reducing bacteria in the petroleum industry. In Petroleum Microbiology pp 619–641 Edited by Atlas R. M. New York: Macmillan;
    [Google Scholar]
  21. King R. A., Miller J. D. A. 1971; Corrosion by the sulphate-reducing bacteria. Nature. London 233:491–492
    [Google Scholar]
  22. Maldonado-Zagal S. B., Boden P. J. 1982; Hydrolysis of elemental sulphur in water and its effect on the corrosion of mild steel. British Corrosion Journal 17:116–120
    [Google Scholar]
  23. Moosavi A. N., Hamilton W. A. 1986; Microbial corrosion studies in a marine sulphuretum. In Microbial Problems in the Offshore Oil Industry Edited by Hill E. C. London: Institute of Petroleum (in the Press);
    [Google Scholar]
  24. Miller J. D. A. 1981; Metals. In Microbial Biodeterioration pp 149–202 Edited by Rose A. H. New York: Academic Press;
    [Google Scholar]
  25. Nethe-Jaenchen R., Thauer R. K. 1984; Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat cultures. Archives of Microbiology 137:236–240
    [Google Scholar]
  26. Odom J. M., Peck H. D. Jr 1984; Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacterium Desulfovibrio . Annual Review of Microbiology 38:551–592
    [Google Scholar]
  27. Pankhania I. P., Gow L. A., Hamilton W. A. 1986a; Extraction of periplasmic hydrogenase from Desulfovibrio vulgaris (Hildenborough) . FEMS Microbiology Letters 35:1–4
    [Google Scholar]
  28. Pankhania I. P., Gow L. A., Hamilton W. A. 1986n; The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. Journal of General Microbiology 132:3349–3356
    [Google Scholar]
  29. Postgate J. R. 1984 The Sulphate-reducing Bacteria, 2nd edn.. Cambridge: Cambridge University Press;
    [Google Scholar]
  30. Pourbaix M. 1966 Atlas of Electrochemical Equilibria in Aqueous Solutions New York: Pergamon Press;
    [Google Scholar]
  31. Schaschl E. 1980; Elemental sulphur as a corrodent in de-aerated, neutral aqueous solutions. Material Performance 19:9–12
    [Google Scholar]
  32. Smith J. S., Miller J. D. A. 1975; Nature of sulphides and their corrosive effects on ferrous metals: a review. British Corrosion Journal 10:136–143
    [Google Scholar]
  33. Tiller A. K. 1982; Aspects of microbial corrosion. In Corrosion Processes pp 115–159 Edited by Parkins R. N. London New York: Applied Science Publishers;
    [Google Scholar]
  34. Tiller A. K., Booth G. H. 1962; Polarisation studies of mild steel in cultures of sulphate-reducing bacteria. Transactions of the Faraday Society 58:110–115
    [Google Scholar]
  35. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238
    [Google Scholar]
  36. Uhlig H. H. 1963 Corrosion and Corrosion Control New York: Wiley;
    [Google Scholar]
  37. West J. M. 1980 Basic Corrosion and Oxidation Chichester: Ellis Horwood;
    [Google Scholar]
  38. Von Wolzogen Kühr C. A. H., Van Der KIugt L. S. 1934; Graphication of cast iron as an electrobiochemical process in anaerobic soils. Water 18:147–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-12-3357
Loading
/content/journal/micro/10.1099/00221287-132-12-3357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error