1887

Abstract

SUMMARY: and species contain quinoprotein glucose dehydrogenase apoenzyme (EC 1.1.99.17). Addition to whole cells of pyrrolo-quinoline quinone (PQQ), the prosthetic group of this enzyme, resulted in the production of gluconic acid from glucose. The reconstitution of apo-glucose dehydrogenase with PQQ was dependent on the presence of Ca or Mg. Optimal conditions for reconstitution allowed maximal glucose dehydrogenase activity in the presence of 1–10 nmol PQQ 1. Synthesis of the apoenzyme of glucose dehydrogenase was not dependent on glucose in the growth media. The physiological significance of the synthesis of apo-glucose dehydrogenase, as found in a variety of bacteria, is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-4-867
1987-04-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/4/mic-133-4-867.html?itemId=/content/journal/micro/10.1099/00221287-133-4-867&mimeType=html&fmt=ahah

References

  1. Ameyama M., Hayashi M., Matsushita K., Sinagawa E., Adachi O. 1984a; Microbial production of pyrrolo-quinoline quinone. Agricultural and Biological Chemistry 48:561–565
    [Google Scholar]
  2. Ameyama M., Sinagawa E., Matsushita K., Adachi O. 1984b; Growth stimulating substance for microorganisms produced by Escherichia coli causing the reduction of the lag phase in microbial growth and identity of the substance with pyrrolo-quinoline quinone. Agricultural and Biological Chemistry 48:3099–3107
    [Google Scholar]
  3. Ameyama M., Nonobe M., Hayashi M., Sinagawa E., Matsushita K., Adachi O. 1985; Mode of binding of pyrroloquinoline quinone to apo-glucose dehydrogenase. Agricultural and Biological Chemistry 49:1227–1231
    [Google Scholar]
  4. Arthur L.O., Bulla L. A. Jr Julian G., Nakamura L. K. 1973; Carbohydrate metabolism in Agrobacterium tumefaciens. Journal of Bacteriology 116:304–313
    [Google Scholar]
  5. Beardmore-Gray M., Anthony C. 1986; The oxidation of glucose by Acinetobacter calcoaceticus: the interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. Journal of General Microbiology 132:1257–1268
    [Google Scholar]
  6. Courtois B., Hornezet J. P., Derieux J. C. 1979; Effet de la synthese d’acide 2 ceto-gluconique sur la production d’exopolysaccharides par une souche de Rhizobium meliloti. Canadian Journal of Microbiology 25:1191–1196
    [Google Scholar]
  7. Dalby A., Blackwood A. C. 1955; Oxidation of sugars by an enzyme preparation from Aerobacter aerogenes. Canadian Journal of Microbiology 1:733–742
    [Google Scholar]
  8. Dawes E. A. 1981; Carbon metabolism. In Continuous Culture of Cells 2 pp. 1–38 Calcott P. H. Edited by Boca Raton, Florida: CRC Press;
    [Google Scholar]
  9. Doelle H. W. 1975 Bacterial metabolism pp. 274–278 London:: Academic Press.;
    [Google Scholar]
  10. Duine J. A., Frank J. Jzn Zeeland J. K. 1979; Glucose dehydrogenase from Acinetobacter calcoaceticus: a quinoprotein. FEBS Letters 108:443–446
    [Google Scholar]
  11. Duine J. A., Frank J. Jzn Jongejan J. A. 1985; The coenzyme PQQ and quinoproteins, a novel class of oxidoreductase enzymes. In Proceedings of the 16th FEBS Congress, part A pp. 79–88 Utrecht:: VNU Science Press.;
    [Google Scholar]
  12. Duncan M. J. 1979; l-Arabinose metabolism in rhizobia. Journal of General Microbiology 113:177–179
    [Google Scholar]
  13. Glenn A. R., Mckay I. A., Arwas R., Dil-Worth M. J. 1984; Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. Journal of General Microbiology 130:239–245
    [Google Scholar]
  14. Groen B. W., Van Kleef M. A. G., Duine J. A. 1986; Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochemical Journal 234:611–615
    [Google Scholar]
  15. Harder W., Attwood M. M. 1978; Biology, physiology, biochemistry of hyphomicrobia. Advances in Microbial Physiology 17:308–356
    [Google Scholar]
  16. Hauge J. G. 1960; Purification and properties of glucose dehydrogenase and cytochrome b from Bacterium anitratum. Biochimica et biophysica acta 45:250–262
    [Google Scholar]
  17. Hauge J. G. 1961; Glucose dehydrogenase in bacteria: a comparative study. Journal of Bacteriology 82:609–614
    [Google Scholar]
  18. Hommes R. W. J., Postma P. W., Neijssel O. M., Tempest D. W., Dokter P., Duine J. A. 1984; Evidence of quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiology Letters 24:329–333
    [Google Scholar]
  19. Juni E. 1978; Genetics and physiology of Acinetobacter. Annual Review of Microbiology 32:349–371
    [Google Scholar]
  20. Lessie T. G., Phibbs P. V. 1984; Alternative pathways of carbohydrate utilization in Pseudomonas. Annual Review of Microbiology 38:358–387
    [Google Scholar]
  21. Pedrosa F. O., Zancan G. T. 1974; L-Arabinose metabolism in Rhizobium japonicum. Journal of Bacteriology 119:336–338
    [Google Scholar]
  22. PlanquÉ K., Van Brussel A. A. N. 1979; An improved large-scale isolation procedure for bacter- oids of Rhizobium leguminosarum Frank from Pisum sativum L. Plant and Soil 45:309–315
    [Google Scholar]
  23. Porter N., Drozd J. W., Linton J. D. 1983; The effects of cyanide on the growth and respiration of Enterobacter aerogenes in continuous culture. Journal of General Microbiology 129:7–16
    [Google Scholar]
  24. Pronk J. T., Van Schie B. J., Van Dijken J. P., Kuenen J. G. 1986; Energization of solute transport by PQQ-dependent glucose dehydrogenase in membrane vesicles of Acinetobacter species. Antonie van Leeuwenhoek 51:560–561
    [Google Scholar]
  25. Van Schie B. J., Van Dijken J. P., Kuenen J. G. 1984; Non-coordinated synthesis of glucose dehydrogenase and its prosthetic group PQQ in Acinetobacter and Pseudomonas species. FEMS Microbiology Letters 24:133–138
    [Google Scholar]
  26. Van Schie B. J., Hellingwerf K. J., Van Dijken J. P., Elferink M. G. L., Van Dijl J. M., Kuenen J. G., Konings W. N. 1985; Energy transduction by electron transfer via a pyrrolo-quinoline quinone dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter calcoaceticus (var. lwoffi). Journal of Bacteriology 136:493–499
    [Google Scholar]
  27. Shimao M., Ninomiya K., Kuno O., Kato N., Sakazawa C. 1986; Existence of a novel enzyme, pyrroloquinoline quinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Applied and Environmental Microbiology 51:268–275
    [Google Scholar]
  28. Trinchant J. C., Birot A. M., Rigaud J. 1981; Oxygen supply and energy-yielding substrates for nitrogen fixation (acetylene reduction) by bacteroid preparations. Journal of General Microbiology 125:159–165
    [Google Scholar]
  29. Vardanis A., Hochster R. M. 1961; On the mechanism of glucose metabolism in the plant tumor-inducing organism Agrobacterium tumefaciens. Canadian Journal of Biochemistry and Physiology 39:1165–1182
    [Google Scholar]
  30. De Vries G. E. 1980 Transport of sugars and organic acids in Rhizobium leguminosarum and their role in symbiosis PhD thesis University of Leiden.:
    [Google Scholar]
  31. Zambryski P., Joos H., Leemans J., Van Montagu M., Schell J. 1983; Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO Journal 2:2143–2150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-4-867
Loading
/content/journal/micro/10.1099/00221287-133-4-867
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error