1887

Abstract

The regulated pathway operon for the catabolism of salicylate on the naphthalene plasmid pWW60-22 was cloned into the broad-host-range vector pKT230 on a 17·5 kbp HI fragment. The recombinant plasmid conferred the ability to grow on salicylate when mobilized into plasmid-free PaW130. A detailed restriction map of the insert was derived and the locations of some of the genes were determined by subcloning and assaying for their gene products in and hosts. The existence of a regulatory gene was demonstrated by the induction of enzyme activities in the presence of salicylate. DNA-DNA hybridization indicated a high degree of structural homology between the pWW60-22 operon and the analogous pathway operon on TOL plasmid pWW53-4. The data are consistent with the structural genes being arranged in an identical linear array and suggest an evolutionary link between the two catabolic systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-10-2769
1988-10-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/10/mic-134-10-2769.html?itemId=/content/journal/micro/10.1099/00221287-134-10-2769&mimeType=html&fmt=ahah

References

  1. Bagdasarian M., Lurz R., Rückert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose cloning vectors. II. Broad host range, high copy number RSF1010- derived vectors and a host:vector system for gene cloning. Gene 16:237–247
    [Google Scholar]
  2. Bagdasarian M. M., Amann E., Lurz R., Rückert B., Bagdasarian M. 1983; Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad host range, regulatable expression vectors. Gene 26:273–282
    [Google Scholar]
  3. Bayley S. A., Morris D. W., Broda P. 1979; The relationship of degradative and resistance plasmids of Pseudomonas belonging to the same incompatibility group. Nature; London: 280338–339
    [Google Scholar]
  4. Bolivar F., Rodriguez R. L., Green P. J., Betlach H. C., Heynecker H. L., Boyer H. W., Crosa J. J., Falkow S. 1977; Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  5. Boronin A. M., Kochetov V. V., Starovoitov 1.1., Skryabin G. K. 1977; Plasmids pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genus Pseudomonas . Doklady Academii nauk SSSR 237:1205–1208
    [Google Scholar]
  6. Boronin A. M., Kochetov V. V., Skryabin G. K. 1980; Incompatibility groups of naphthalene degradative plasmids in Pseudomonas . FEMS Microbiology Letters 7:249–252
    [Google Scholar]
  7. Cane P. A., Williams P. A. 1982; The plasmid- coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: phenotypic changes correlated with structural modification of the plasmid pWW60-l. Journal of General Microbiology 128:2281–2290
    [Google Scholar]
  8. Cane P. A., Williams P. A. 1986; A restriction map of naphthalene catabolic plasmid pWW60-l and the location of some of its catabolic genes. Journal of General Microbiology 132:2919–2929
    [Google Scholar]
  9. Catterall F. A., Sala-Trepat J. M., Williams P. A. 1971; The coexistence of two pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad. Biochemical and Biophysical Research Communications 43:463–469
    [Google Scholar]
  10. Cohen S. N., Chang A. C. Y., Hsu C. L. 1972; Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  11. Collinsworth W. L., Chapman P. J., Dagley S. 1973; Stereospecific enzymes in the degradation of aromatic compounds by Pseudomonas putida . Journal of Bacteriology 113:922–931
    [Google Scholar]
  12. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida . Journal of Bacteriology 114:974–979
    [Google Scholar]
  13. Farrell R., Chakrabarty A. M. 1979; Degrada- tive plasmids: molecular nature and mode of evolution. In Plasmids of Medical, Environmental and Commercial Importance pp. 97–109 Timmis K. N., Puhler A. Edited by Amsterdam: Elsevier/North Holland Biomedical;
    [Google Scholar]
  14. Feist C. F., Hegeman G. D. 1969; Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Journal of Bacteriology 100:869–877
    [Google Scholar]
  15. Franklin F. C. H., Bagdasarian M., Bagdasarian M. M., Timmis K. N. 1981; Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proceedings of the National Academy of Sciences of the United States of America 78:7458–7462
    [Google Scholar]
  16. Girvitz S. C., Bacchetti S., Rainbow A. J., Graham F. W. 1980; A rapid and efficient procedure for the purification of DNA from agarose gels. Analytical Biochemistry 106:492–496
    [Google Scholar]
  17. Grinter N. J. 1983; A broad-host range cloning vector transposable to various replicons. Gene 21:133–143
    [Google Scholar]
  18. Guerry P., Leblanc D. J., Falkow S. 1973; General method for the isolation of plasmid deoxyribonucleic acid. Journal of Bacteriology 116:1064–1066
    [Google Scholar]
  19. Harayama S., Lehrbach P. R., Timmis K. N. 1984; Transposon mutagenesis of mete-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. Journal of Bacteriology 160:251–255
    [Google Scholar]
  20. Harayama S., Mermod N., Rekik M., Lehrbach P. R. 1987a; Roles of the divergent branches of the mete-cleavage pathway in the degradation of benzoate and substituted benzoates. Journal of Bacteriology 169:558–564
    [Google Scholar]
  21. Harayama S., Rekik M., Wasserfallen A., Bairoch A. 1987b; Evolutionary relationships between catabolic pathways for aromatics: conservation of gene order and nucleotide sequences of catechol oxidation genes of pWWO and NAH7 plasmids. Molecular and General Genetics 210:241–247
    [Google Scholar]
  22. Holmes D. S., Quigley N. 1981; A rapid boiling method for preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  23. Keil H., Williams P. A. 1985; A new class of TOL plasmid deletion mutants in Pseudomonas putida MT15 and their reversion by tandem gene amplification. Journal of General Microbiology 131:1023–1033
    [Google Scholar]
  24. Keil H., Lebens M. R., Williams P. A. 1985a; TOL plasmid pWW15 contains two non-homologous catechol 2,3-oxygenase genes independently regulated. Journal of Bacteriology 163:248–255
    [Google Scholar]
  25. Keil H., Keil S., Pickup R. W., Williams P. A. 1985b; The complete meta pathway operon of the toluene/xylene catabolic pathway cloned from TOL plasmid pWW53. Journal of Bacteriology 164:887–895
    [Google Scholar]
  26. Keil H., Keil S., Williams P. A. 1987; Molecular analysis of regulatory and structural xyl genes of the TOL plasmid pWW 53 ·4. Journal of General Microbiology 133:1149–1158
    [Google Scholar]
  27. Lehrbach P. R., Mcgregor I., Ward J. M., Broda P. 1983; Molecular relationships between Pseudomonas IncP-9 degradative plasmids TOL, NAH and SAL. Plasmid 10:164–174
    [Google Scholar]
  28. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Research 9:309–321
    [Google Scholar]
  29. Murray K., Duggleby C. J., Sala-Trepat J. M., Williams P. A. 1972; The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. European Journal of Biochemistry 28:301–310
    [Google Scholar]
  30. Murray N. E., Brammar W. J., Murray K. 1977; Lambdoid phages that simplify the recovery of in vitro recombinants. Molecular and General Genetics 150:53–61
    [Google Scholar]
  31. Sala-Trepat J. M., Evans W. C. 1971; The meta cleavage of catechol by Azotobacter species: 4- oxalocrotonate pathway. European Journal of Biochemistry 20:400–413
    [Google Scholar]
  32. Schell M. A., Wender P. E. 1986; Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. Journal of Bacteriology 166:9–14
    [Google Scholar]
  33. Shamsuzzaman K. M., Barnsley E. A. 1974; The regulation of naphthalene oxygenase in pseudomonads. Journal of General Microbiology 83:165–170
    [Google Scholar]
  34. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–571
    [Google Scholar]
  35. Spooner R. A., Lindsay K., Franklin F. C. H. 1986; Genetic, functional and sequence analysis of the xylR and xylS regulatory genes of the TOL plasmid pWWO. Journal of General Microbiology 132:1347–1358
    [Google Scholar]
  36. Wheatcroft R., Williams P. A. 1981; Rapid methods for the study of both stable and unstable plasmids in Pseudomonas . Journal of General Microbiology 124:433–437
    [Google Scholar]
  37. Wigmore G. J., Bayly R. C., Di Berardino D. 1974; Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogs. Journal of Bacteriology 120:31–37
    [Google Scholar]
  38. Worsey M. J., Williams P. A. 1975; Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124:7–13
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the MBmp 18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  40. Yen M., Gunsalus I. C. 1985; Regulation of naphthalene catabolic genes of plasmid NAH7. Journal of Bacteriology 162:1008–1013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-10-2769
Loading
/content/journal/micro/10.1099/00221287-134-10-2769
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error