1887

Abstract

From a series of clinical isolates analysed with respect to bacteriocin production, one strain (SMG 38) was exceptional in that it produced two distinct phage-tail-like bacteriocins differing in morphology, sedimentation, heat sensitivity, and host range. The more active component (bc25) was effective against , while the other component (McG) inhibited growth of and , but not . Plaque formation on tested strains was negative except in the single case of the lysate of a subclone of SMG 38 which caused the production of a virulent phage, , in K12 RH 5108. This seems to be a rare event. Like the bacteriocin McG, phage used the same receptor protein, coded at about 30 min (locus ) on the chromosome, as does the temperate and serologically unrelated phage . Both McG and UV-irradiated killed sensitive bacteria. The survival rate depended on the input multiplicity and also on the indicator strain, and was increased by the presence of prophage 80 in the cell. When survivors were allowed to resume their growth under normal conditions, they showed cell elongation whatever their RecA phenotype. No difference was observed between the two agents with respect to these observations, except that McG, unlike irradiated , was inactive against UNF 5023, which possessed the Fig receptor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-1-25
1989-01-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/1/mic-135-1-25.html?itemId=/content/journal/micro/10.1099/00221287-135-1-25&mimeType=html&fmt=ahah

References

  1. Asensio C., Perezdiaz J.C., Martinez M.C., Baquero F. 1976; A new family of low molecular weight antibiotics from Enterobacteria. Biochemical and Biophysical Research Communications 69:7–14
    [Google Scholar]
  2. Bradley D.E. 1967; Ultrastructure of bacteriophages and bacteriocins. Bacteriological Reviews 31:230–314
    [Google Scholar]
  3. Colson C., VanPel A. 1974; DNA restriction and modification systems in Salmonella. I. Molecular and General Genetics 129:325–337
    [Google Scholar]
  4. Dixon R.A., Kennedy C., Kondorosi A. 1977; Complementation analysis inKlebsiella pneumoniaemutants defective in nitrogen fixation. Molecular and General Genetics 157:189–198
    [Google Scholar]
  5. Godard C. 1974; Transfert simultanté de caractéres antigéniques et de résistance à des phages T deShigella flexneri F6S Hfr à E. Coli K12. Annales de Microbiologie 125A:403–412
    [Google Scholar]
  6. Gratia J.P. 1973; Etude génétique du bactériophage Ғδ et d’autres coliphages apparentés à Ғ80. Annales de Microbiologie 124B:21–34
    [Google Scholar]
  7. Gratia J.P. 1982; Differentiation in the specificities of sero-neutralization and adsorption to the host membrane in polyphenotypic hybrid viruses. Archives internationales de physiologie et biochimie 90:31–33
    [Google Scholar]
  8. Gratia J.P. 1984; Prophage elements conferring high mutability of host neighbouring genetonB, high spontaneous production of particles and cell elongation. Annales de Virologie 135E:369–388
    [Google Scholar]
  9. Gratia J.P., Hannecart-Pokorni E., Godard C. 1980; Etude préliminaire du récepteur d’un bactériophage actif sur diverses Entérobactéries. Archives internationales de physiologie et biochimie 88:277–278
    [Google Scholar]
  10. Hamon Y., Peron Y. 1961; Etude de la propriété bactériocinogéne dans le genreSerratia. Annales de I’lnstitut Pasteur 100:818–821
    [Google Scholar]
  11. Kageyama M. 1975; Bacteriocins and bacteriophages inPseudomonas aeruginosa. In: Microbiol Drug Resistance pp. 291–305 Mitsuka-shi S., Hashimoto H. Edited by Tokyo: University Press;
    [Google Scholar]
  12. Matsushiro A. 1963; Specialized transduction of tryptophan markers inEscherichia coli K12 by bacteriophage Ғ80. Virology 19:475–482
    [Google Scholar]
  13. Prinsloo H.E. 1966; Bacteriocins and phages produced bySerratia marcescens. Journal of General Microbiology 45:205–212
    [Google Scholar]
  14. Sanderson K.E., Roth J.R. 1983; Linkage map ofSalmonella typhimurium. Microbiological Reviews 47:410–553
    [Google Scholar]
  15. Thiry M. 1986 Etude de la détermination génétique del’urédovoricine 20D3 pp. 1–27 PhD thesis; Liege University.:
    [Google Scholar]
  16. Traub W. 1980; Bacteriocin and phage typing ofSerratia. In :The Genus Serratia, pp 80–100 Von Graevenitz A., Rubin S. J. Edited by Boca Raton, Florida: CRC Press;
    [Google Scholar]
  17. Traub W., Acker G., Kleber I. 1974; Studies on group A bacteriocins ofSerratia marcescens. II. Further characterization of serogroup I and II bacteriocins. Zentralblatt für Bakteriologie, Parasi-tenkunde, Infektionskrankheiten und Hygiene (Abt. 1, Orig. Reihe A) 229:482–489
    [Google Scholar]
  18. VanPel A., Colson C. 1974; DNA restriction and modification systems inSalmonella. Molecular and General Genetics 135:51–60
    [Google Scholar]
  19. Wilkinson R.G., Gemski P., Jun P., Stocker B.A.D. 1972; Non-smooth mutants inSalmonella typhimurium. Journal of General Microbiology 70:527–554
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-1-25
Loading
/content/journal/micro/10.1099/00221287-135-1-25
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error