1887

Abstract

While wild-type K12 cannot grow with -serine as carbon source, two types of mutants with altered methionine metabolism can. The first type, mutants, in which the methionine biosynthetic enzymes are expressed constitutively, are able to grow with -serine as carbon source. Furthermore, a plasmid carrying the gene confers ability to grow on -serine. These observations suggest that in these mutants, -serine deamination may be a result of a side-reaction of the gene product, cystathionine -lyase: The second type is exemplified by two newly isolated strains carrying mutations mapping between 89·6 and 90 min. These mutants use -serine as carbon source, and also require methionine for growth with glucose at 37°C and above. The phenotypes of the new mutants resemble those of both and constitutive mutants in some respects, but have been differentiated from both of them.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-6-1017
1990-06-01
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/6/mic-136-6-1017.html?itemId=/content/journal/micro/10.1099/00221287-136-6-1017&mimeType=html&fmt=ahah

References

  1. Arps P. J., Winkler M. E. 1987; Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette. Journal of Bacteriology 169:1061–1070
    [Google Scholar]
  2. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K-12. , edition 6. Microbiological Reviews 44:1–56
    [Google Scholar]
  3. Belfaiza J., Parsot C., Martel A., Bouthier De La Tour C., Margarita D., Cohen G. N., Saint Girons I. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proceedings of the National Academy of Sciences of the United States of America 83:867–871
    [Google Scholar]
  4. Braunstein A. E., Goryachenkova E. V. 1984; The beta-replacement-specific pyridoxal-P dependent lyases. Advances in Enzymology 56:1–90
    [Google Scholar]
  5. Bruni C. B., Colantuoni V., Sbordone L., Cortese R., Blasi F. 1977; Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. Journal of Bacteriology 130:4–10
    [Google Scholar]
  6. Delavier-Klutchko C., Flavin M. 1975; Role of a bacterial cystathionine-β-cleavage enzyme in disulfide decomposition. Bio- chimica et Biophysica Acta 99:375–377
    [Google Scholar]
  7. Fink G. R., Klopotowski T., Ames B. N. 1967; Histidine regulatory mutants in Salmonella typhimurium . Journal of Molecular Biology 30:81–95
    [Google Scholar]
  8. Flavin M., Slaughter C. 1964; Cystathionine cleavage enzymes of Neurospora . Journal of Biological Chemistry 239:2212–2219
    [Google Scholar]
  9. Flavin M., Slaughter C. 1967; Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochimica et Biophysica Acta 132:400–405
    [Google Scholar]
  10. Hunter J. S. V., Greene R. C., Su C. H. 1975; Genetic characterization of the me?A" locus in Escherichia coli K-12. Journal of Bacteriology 122:1144–1152
    [Google Scholar]
  11. Kraus J., Soll D., Low K. B. 1979; Glutamyl-γ-methyl ester acts as a methionine analogue in E. coli: Analogue resistant mutants map at the metJ and metK loci. Genetical Research 33:49–55
    [Google Scholar]
  12. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning, a Laborarory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Martin R. G., Berberich M. A., Ames B. N., Davis W. W., Goldberger R. F., Yourno J. D. 1971; Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium . Methods in Enzymology 17:3–44
    [Google Scholar]
  14. Matthews R. G., Neidhardt F. C. 1989; Elevated serine catabolism is associated with the heat shock response in Escherichia coli . Journal of Bacteriology 171:2619–2625
    [Google Scholar]
  15. Miller J. H. editor 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Murray M. L., Hartman P. E. 1972; Overproduction of hisH and hisF gene products leads to inhibition of cell division in Salmonella . Canadian Journal of Microbiology 18:671–681
    [Google Scholar]
  17. Newman E. B., Malik N., Walker C. 1982; l-Serine degradation in Escherichia coli K-12: directly isolated ssd mutants and their intragenic revertants. Journal of Bacteriology 150:710–715
    [Google Scholar]
  18. Newman E. B., Miller B., Colebrook L. D., Walker C. 1985; A mutation in E. coli K-12 results in a requirement for thiamine and a decrease in L-serine deaminase activity. Journal of Bacteriology 161:272–276
    [Google Scholar]
  19. Pardee A. B., Prestidge L. S. 1955; Induced formation of serine and threonine deaminase by Escherichia coli . Journal of Bacteriology 70:667–674
    [Google Scholar]
  20. Ramotar D., Newman E. B. 1986; An estimate of the extent of deamination of l-serine in auxotrophs of Escherichia coli K-12. Canadian Journal of Microbiology 32:842–846
    [Google Scholar]
  21. Ron E. Z., Davis B. D. 1971; Growth rate of E. coli at elevated temperature: limitation by methionine. Journal of Bacteriology 107:391–396
    [Google Scholar]
  22. Roth J. R., Anton D. N., Hartman P. E. 1966; Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. Journal of Molecular Biology 22:305–323
    [Google Scholar]
  23. Rudd K. R., Bochner B. R., Cashel M., Roth J. R. 1985; Mutations in the spoT gene of Salmonella typhimurium . Journal of Bacteriology 163:534–542
    [Google Scholar]
  24. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. 1989; A collection of strains containing genetically linked alternating antibiotic resistance for genetic mapping of Escherichia coli . Microbiological Reviews 53:1–24
    [Google Scholar]
  25. Su C. H., Greene R. C. 1971; Regulation of methionine biosynthesis in Escherichia coli: Mapping of the metJ locus and properties of a metJ+/metJ~ diploid. Proceedings of the National Academy of Sciences of the United States of America 68:367–371
    [Google Scholar]
  26. Su H. S., Lang B. F., Newman E. B. 1989; l-serine degradation in Escherichia coli K-12. Cloning and sequencing of the sdaA gene. Journal of Bacteriology 171:5095–5102
    [Google Scholar]
  27. Uren J. R. 1987; Cystathionine-β-lyase from Escherichia coli . Methods in Enzymology 143:483–486
    [Google Scholar]
  28. Wijesundera S., Woods D. D. 1962; The catabolism of cystathionine by Escherichia coli . Journal of General Microbiology 29:353–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-6-1017
Loading
/content/journal/micro/10.1099/00221287-136-6-1017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error