1887

Abstract

The yeast could not utilize ethanol as a growth substrate, although ethanol stimulated cellular O consumption and the reduction of intracellular nicotinamide adenine nucleotides. Also, ethanol inhibited cell growth in glucose-containing medium. The effect was stronger when the K concentration in the growth medium was lowered from 5.8 to 0.6 mM. Addition of glucose to an aerated cell suspension caused an initial H efflux and K influx in a ratio of approximately 1:1. This was followed by a phase of continuing extracellular acidification without any measurable uptake of K. In contrast, in cells energized by glucose, ethanol stimulated K efflux; concomitantly, H extrusion was markedly lowered by ethanol. The rates of H extrusion correlated with the intracellular level of glucose 6-phosphate and not of ATP. It is concluded that there is a regulatory interaction, though not by a direct effect, between glucose 6-phosphate and the plasma-membrane ATPase. Ethanol appears to activate electron transfer from cytosolic NADH to O by a pathway independent of the mitochondrial respiratory chain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1265
1990-07-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1265.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1265&mimeType=html&fmt=ahah

References

  1. Aguilera A., Benitez T. 1986; Ethanol-sensitive mutants of Saccharomyces cerevisiae . Archives of Microbiology 143:337–344
    [Google Scholar]
  2. Aldermann B., HöFer . 1981; The active transport of monosaccharides by the yeast Metschnikowia reukaufii: evidence for an electrochemical gradient of H+ across the cell membrane. Experimental Mycology 5:120–132
    [Google Scholar]
  3. Brown S. W., Oliver S. G., Harrison D. E. F., Righelato R. C. 1981; Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. European Journal of Applied Microbiology and Biotechnology 11:151–155
    [Google Scholar]
  4. Camacho M., Ramos J., Rodriguez-Navarro A. 1981; Potassium requirements of Saccharomyces cerevisiae . Current Microbiology 6:295–299
    [Google Scholar]
  5. Cartwright C. P., Juroszek J. -R., Beaven M. J., Ruby F. M. S., De Morais S. M. F., Rose A. H. 1986; Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae . Journal of General Microbiology 132:369–377
    [Google Scholar]
  6. Crane F. L., Roberts H., Linnane A. W., Low H. 1982; Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae . Journal of Bioenergetics and Biomembranes 14:191–205
    [Google Scholar]
  7. Duysens L. N. M., Amesz J. 1957; Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochimica et Biophysica Acta 24:19–26
    [Google Scholar]
  8. Eddy A. A. 1978; Proton-dependent solution transport in microorganisms. Current Topics in Membranes and Transport 10:278–360
    [Google Scholar]
  9. Foury F., Boutry M., Goffeau A. 1977; Efflux of potassium induced by Dio-9, a plasma membrane ATPase inhibitor in the yeast Schizosaccharomyces pombe . Journal of Biological Chemistry 252:4577–4583
    [Google Scholar]
  10. Gläser H. -U., Höfer M. 1986; Effect of cations on the plasma- membrane-bound ATPase from the yeast Metschnikowia reukaufii . Journal of General Microbiology 132:2615–2620
    [Google Scholar]
  11. Gläser H. -U., Höfer M. 1987; Ion-dependent generation of the electrochemical proton gradient Δ~μH+ in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufii . Biochimica et Biophysica Acta 905:287–294
    [Google Scholar]
  12. Goffeau A., Slayman C. W. 1981; The proton-translocating ATPase of the fungal plasma membrane. Biochimica et Biophysica Acta 639:197–223
    [Google Scholar]
  13. Haarasilta S., Oura E. 1975; On the activity and regulation of anapleurotic and gluconeogenic enzymes during the growth phase of baker’s yeast. European Journal of Biochemistry 52:1–7
    [Google Scholar]
  14. Hauer R., Uhlemann G., Neummann J., Höfer M. 1981; Proton pumps of the plasmalemma of the yeast Rhodotorula gracilis. Their coupling to fluxes of potassium and other ions. Biochimica et Biophysica Acta 649:680–690
    [Google Scholar]
  15. Höfer M., Misra P. C. 1978; Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis) . Biochemical Journal 172:15–22
    [Google Scholar]
  16. Ingram L. O., Buttke T. M. 1984; Effects of alcohols on microorganisms. Advances in Microbial Physiology 25:254–300
    [Google Scholar]
  17. Käppeli O. 1986; Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Advances in Microbial Physiology 28:181–209
    [Google Scholar]
  18. Kleinzeller A. 1965 Manometrische Methoden Jena: Gustav Fischer;
    [Google Scholar]
  19. Leão C., Van Uden N. 1982; Effect of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae . Biotechnology and Bioengineering 24:2601–2604
    [Google Scholar]
  20. Maitra P. K., Estabrook R. W. 1967; Studies of baker’s yeast metabolism. II. The role of adenine nucleotides and inorganic phosphate in the control of respiration during alcohol oxidation. Archives of Biochemistry and Biophysics 121:129–139
    [Google Scholar]
  21. Millar D. G., Griffith-Smith K., Algar E., Scopes R. K. 1982; Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnology Letters 4:601–609
    [Google Scholar]
  22. Pulver R., Verzar F. 1940; Der Zusammenhang von Kalium und Kohlehydratstoffwechsel bei der Hefe. Helvetica Chimica Acta 23:1087–1100
    [Google Scholar]
  23. Righelato R. C. 1980; Anaerobic fermentation: alcohol production. Philosophical Transactions of the Royal Society B290:303–312
    [Google Scholar]
  24. Rothman L. B., Cabib E. 1969; The efflux of potassium from yeast cells into a potassium free medium. Biochemistry 8:3332–3341
    [Google Scholar]
  25. Rothstein A., Bruce M. 1958; Regulation of glycogen synthesis in the intact yeast cell. Journal of Cellular and Comparative Physiology 51:439–455
    [Google Scholar]
  26. Rottenberg H. 1979; The measurements of membrane potential and ΔpH in cells, organelles, and vesicles. Methods in Enzymology 55:547–549
    [Google Scholar]
  27. Sigler K., Kotyk A., Knotkova A., Operakova M. 1981; Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeast Saccharomyces cerevisiae . Biochimica et Biophysica Acta 643:583–592
    [Google Scholar]
  28. Sychrova H., Kotyk A. 1985; Conditions of activation of yeast plasma membrane ATPase. FEBS Letters 183:21–24
    [Google Scholar]
  29. Wasungu K. M., Simard R. E. 1982; Growth characteristics of baker’s yeast in ethanol. Biotechnology and Bioengineering 24:1125–1134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1265
Loading
/content/journal/micro/10.1099/00221287-136-7-1265
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error