1887

Abstract

A NADH- or NADPH-dependent alkene monooxygenase (AMO) activity has been detected in cell-free extracts of the ethene-utilizing E3 and L1. The activity was not linear with protein concentration in the assay suggesting AMO is a multicomponent enzyme. The inhibition pattern of AMO activity was very similar to the inhibition patterns published for the three-component soluble methane monooxygenases. Fractionation of crude extracts revealed that combination of two fractions was required to restore alkene monooxygenase activity. The first fraction was inhibited by acetylene, indicating it contained an oxygenase component. The second fraction contained reductase activity which was absent from non-induced cells. This reductase activity is probably the NADH-acceptor reductase of AMO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2555
1991-11-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2555.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2555&mimeType=html&fmt=ahah

References

  1. Anthony C. 1986; Bacterial oxidation of methane and methanol. Advances in Microbial Physiology 27:113–210
    [Google Scholar]
  2. De Bont J. A. M., Harder W. 1978; Metabolism of ethylene by Mycobacterium E20. FEMS Microbiology Letters 3:89–93
    [Google Scholar]
  3. de Bont J. A. M., Attwood M. M., Primrose S. B., Harder W. 1979; Epoxidation of short chain alkenes in Mycobacterium E20: the involvement of a specific mono-oxygenase. FEMS Microbiology Letters 6:183–188
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Burris R. H. 1974; Methodology. The Biology of Nitrogen Fixation23 Quispel A. Amsterdam: North Holland Publishing Co;
    [Google Scholar]
  6. Colby J., Dalton H. 1976; The soluble methane mono-oxygenase from Methylococcus capsulatus strain (Bath). Biochemical Journal 157:495–497
    [Google Scholar]
  7. Colby J., Dalton H. 1979; Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochemical Journal 177:903–908
    [Google Scholar]
  8. Colby J., Stirling D. I., Dalton H. 1977; The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Biochemical Journal 165:395–102
    [Google Scholar]
  9. Fox B. G., Lipscomb J. D. 1988; Purification of a high specific activity methane monooxygenase hydrolase component from a type II methanotroph. Biochemical and Biophysical Research Communications 154:165–170
    [Google Scholar]
  10. Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. 1989; Methane monooxygenase from Methylosinus trichosporium OB3b. Journal of Biological Chemistry 264:10023–10033
    [Google Scholar]
  11. van Ginkel C. G., Welten H. G. J., de Bont J. A. M. 1987; Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Applied and Environmental Microbiology 53:2903–2907
    [Google Scholar]
  12. Green J., Dalton H. 1988; The biosynthesis and assembly of protein A of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Journal of Biological Chemistry 263:17561–17565
    [Google Scholar]
  13. Habets-Crützen A. Q. H., Brink L. E. S., van Ginkel C. G., de Bont J. A. M., Tramper J. 1984; Production of epoxides from gaseous alkenes by resting-cell suspensions and immobilized cells of alkene-utilizing bacteria. Applied Microbiology and Biotechnology 20:245–250
    [Google Scholar]
  14. Habets-Crützen A. Q. H., Carlier S. J. N., de Bont J. A. M., Wistuba D., Schurig V., Hartmans S., Tramper J. 1985; Stereospecific formation of 1,2-epoxypropane, 1,2-epoxybutane and l-chloro-2,3-epoxypropane by alkene-utilizing bacteria. Enzyme and Microbial Technology 7:17–21
    [Google Scholar]
  15. Hartmans S., de Bont J. A. M., Tramper J., Luyben K. Ch. A. M. 1985; Bacterial degradation of vinyl chloride. Biotechnology Letters 7:383–388
    [Google Scholar]
  16. Hartmans S., de Bont J. A. M. 1986; Acetol monooxygenase from Mycobacterium Pyl cleaves acetol into acetate and formaldehyde. FEMS Microbiology Letters 36:155–158
    [Google Scholar]
  17. Hartmans S., de Bont J. A. M., Harder W. 1989; Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiology Reviews 63:235–264
    [Google Scholar]
  18. Higgins I. J., Best D. J., Hammond R. C. 1983; New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature London: 286561–564
    [Google Scholar]
  19. Hyman M. R., Arp D. J. 1988; Acetylene inhibition of metalloenzymes. Analytical Biochemistry 173:207–220
    [Google Scholar]
  20. Hyman M. R., Wood P. M. 1985; Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochemical Journal 227:719–725
    [Google Scholar]
  21. May S. W. 1979; Enzymatic epoxidation reactions. Enzyme and Microbial Technology 1:15–22
    [Google Scholar]
  22. Patel R. N., Savas J. C. 1987; Purification and properties of the hydroxylase component of methane monooxygenase. Journal of Bacteriology 169:2313–2317
    [Google Scholar]
  23. Prior S. D., Dalton H. 1985; Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiology Letters 29:105–109
    [Google Scholar]
  24. Scott D., Brannan J., Higgins I. J. 1981; The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. Journal of General Microbiology 125:63–72
    [Google Scholar]
  25. Stirling D. I., Dalton H. 1977; Effect of metal-binding agents and other compounds on methane oxidation by two strains of Methylococcus capsulatus . Archives of Microbiology 114:71–76
    [Google Scholar]
  26. Weijers C. A. G. M., van Ginkel C. G., de Bont J. A. M. 1988; Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane- and alkene-utilizing bacteria. Enzyme and Microbial Technology 10:214–218
    [Google Scholar]
  27. Without B., de Smet M.-J., Kingma J., van Beilen J. B., Kok M., Lageveen R. G., Eggink G. 1990; Bioconversion of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends in Biotechnology 8:46–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2555
Loading
/content/journal/micro/10.1099/00221287-137-11-2555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error