1887

Abstract

Summary: The permissive temperature for sporulation of 27 (up to 42 °C) was found to be 4–5 °C lower than that for growth. The non-permissive temperature suppressed the initial phases of sporulation characterized by the synthesis of an extracellular proteinase but the cells retained the ability to sporulate for several hours. Neither growth at supraoptimal temperatures nor heat shock applied at the end of the growth phase increased the permissive sporulation temperature. The organism synthesized at least ten heat-shock proteins, the dominant one being HSP 69. These proteins were also found in cells after 3 h of incubation at 43·5 °C but their presence did not ensure the ability to sporulate at this temperature. The rise of temperature provoked an imbalance between synthesis and degradation of cellular proteins, whose role in suppression of sporulation is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-787
1991-04-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-787.html?itemId=/content/journal/micro/10.1099/00221287-137-4-787&mimeType=html&fmt=ahah

References

  1. Arnosti D. N., Singer V. L., Chamberlin M. J. 1986; Characterization of heat shock in Bacillus subtilis. Journal of Bacteriology 168:1243–1249
    [Google Scholar]
  2. Benschoter A. S., Ingram L. O. 1986; Thermal tolerance of Zymomonas mobilis: temperature-induced changes in membrane composition. Applied and Environmental Microbiology 51:1278–1284
    [Google Scholar]
  3. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  4. Carper S. W., Duffy J. J., Gerner E. W. 1987; Heat shock proteins in thermotolerance and other cellular processes. Cancer Research 47:5249–5255
    [Google Scholar]
  5. Chaloupka J. 1985; Temperature as a factor regulating the synthesis of microbial enzymes. Microbiological Sciences 2:86–90
    [Google Scholar]
  6. Chaloupka J., Strnadová M. 1982; Kinetics of protein turnover in growing cells of Bacillus megaterium. Journal of General Microbiology 128:1003–1008
    [Google Scholar]
  7. Chaloupka J., Křečková P., Čáslavská J., Strnadová M. 1974; Turnover of murein in cellular and filamentous populations of Bacillus megaterium. Folia Microbiologica 19:257–263
    [Google Scholar]
  8. Chaloupka J., Severin A. I., Kučerová H., Strnadová M. 1982; Differences in the regulation of exocellular proteinase synthesis during growth and sporogenesis of Bacillus megaterium. Canadian Journal of Microbiology 28:1214–1218
    [Google Scholar]
  9. Chung C. H., Goldberg A. L. 1981; The product of the Ion capR) gene in Escherichia coli is the ATP-dependent protease: protease La. Proceedings of the National Academy of Sciences of the United States of America 784931–4935
    [Google Scholar]
  10. Dabrowa N., Howard D. H. 1984; Heat shock and heat stroke proteins observed during germination of the blastoconidia of Candida albicans. Infection and Immunity 44:537–539
    [Google Scholar]
  11. Fan D. P. 1970; Autolysin(s) of Bacillus subtilis as dechaining enzyme. Journal of Bacteriology 103:494–499
    [Google Scholar]
  12. Khoury P. H., Lombardi S. J., Slepecky R. 1987; Perturbation of heat resistance to bacterial spores by sporulation temperature and ethanol. Current Microbiology 15:15–19
    [Google Scholar]
  13. Killeen K. P., Nelson D. R. 1988; Acceleration of starvation and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus. Journal of Bacteriology 170:5200–5207
    [Google Scholar]
  14. Kučerová H., Chaloupka J. 1985; Suppression by temperature of sporulation and of extracellular metalloproteinase synthesis in Bacillus megaterium. FEMS Microbiology Letters 28:293–296
    [Google Scholar]
  15. Kurtz S., Rossi J., Petko L., Lindquist S. 1986; An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157
    [Google Scholar]
  16. Kusukawa N., Yura T. 1988; Heat shock protein, GroE, of Escherichia coli: key protective roles against thermal stress. Genes and Development 2:874–882
    [Google Scholar]
  17. Mackey B. M., Derrick C. M. 1986; Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. Journal of Applied Bacteriology 61:389–393
    [Google Scholar]
  18. Maniak M., Nellen W. 1988; A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Molecular and Cellular Biology 8:153–159
    [Google Scholar]
  19. O’Farrell P. H. 1975; High resolution two-dimensional electro-phoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  20. Pine M. J. 1973; Regulation of intracellular proteolysis in Escherichia coli. Journal of Bacteriology 115:107–116
    [Google Scholar]
  21. Qoronfleh M. W., Streips U. N. 1987; Initial subcellular localization of heat-shock proteins in Bacillus subtilis. FEMS Microbiology Letters 43:373–377
    [Google Scholar]
  22. Rechsteiner M., Rogers S., Rote K. 1987; Protein structure and intracellular stability. Trends in Biochemical Sciences 12:390–394
    [Google Scholar]
  23. Richter A., Hecker M. 1986; Heat-shock proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. FEMS Microbiology Letters 36:69–71
    [Google Scholar]
  24. Schlesinger M. J. 1986; Heat shock proteins: the search for functions. Journal of Cell Biology 103:321–325
    [Google Scholar]
  25. Schlesinger M. J., Ashburner M., Tissieres A. 1982 Heat-shock - From Bacteria to Man Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Streips U. N., Polio F. W. 1985; Heat shock proteins in bacilli. Journal of Bacteriology 162:434–437
    [Google Scholar]
  27. Strnadová M., Prasad R., Kučerová H., Chaloupka J. 1986; Effect of temperature on growth and protein turnover in Bacillus megaterium. Journal of Basic Microbiology 26:289–298
    [Google Scholar]
  28. Todd J. A., Hubbard T. J. P., Travers A. A., Ellar D. J. 1985; Heat shock proteins during growth and sporulation of Bacillus subtilis. FEBS Letters 188:209–214
    [Google Scholar]
  29. Ud Din F., Křečková P., Chaloupka J. 1969; Regulation of the formation of protease in Bacillus megaterium. III. Enzyme production under limitation by nitrogen source. Folia Microbiologica 14:70–76
    [Google Scholar]
  30. Yura T., Tobe T., Ito K., Osawa T. 1984; Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proceedings of the National Academy of Sciences of the United States of America 816804–6807
    [Google Scholar]
  31. Zengel J. M., Lindahl L. 1985; Transcriptional control of the S10 ribosomal protein operon of Escherichia coli after a shift to higher temperature. Journal of Bacteriology 163:140–147
    [Google Scholar]
  32. Zhou Y.-N., Kusukawa N., Erickson J. W., Gross C. A., Yura T. 1988; Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ32. Journal of Bacteriology 170:3640–3649
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-787
Loading
/content/journal/micro/10.1099/00221287-137-4-787
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error