1887

Abstract

The primary structures of helices A to G of all bacteriorhodopsin (BR)-like retinal proteins identified in newly isolated halobacteria have been determined from the nucleotide sequence of the BR-like protein genes. Using PCR methods, gene fragments encoding the A- to G-helix region of BR-like proteins were directly amplified from the total genomic DNA of the seven new halobacterial strains. Oligonucleotide primers corresponding to highly conserved regions in the helices A to G were designed from the nucleotide sequences of bacterioopsin () and archaeopsin-I (-I), and some primers were effective for the amplification of the gene encoding C- to G-helix region of all new BR-like proteins. The primer corresponding to A-helix region was designed either from the nucleotide sequence of and -I or from the N-terminus amino acid sequence of a BR-like protein. Three new BR-like proteins were identified from the amino acid sequence, which was deduced from the nucleotide sequence of the genes encoding A- to G-helix region of the BR-like proteins. It was found that not only the amino acid sequence, but also the nucleotide sequence of the gene encoding the C- and G-helix region, in which a number of important residues for proton translocation are located, is highly conserved in three new BR-like proteins. Analysis of the primary structures of the A- to G-helix region of new BR-like proteins revealed that one has about 85% homology with aR-I and aR-II, and the rest have about 55% homology with halobium BR, aR-I and aR-II. From the results of the sequence analysis, we suggest that BR and BR-like proteins (functioning as light-driven proton pumps) can be classified into three types (BR type, aR type and a new type), and each of these types has 50-55% homology to each other in amino acid sequence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-11-2389
1992-11-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/11/mic-138-11-2389.html?itemId=/content/journal/micro/10.1099/00221287-138-11-2389&mimeType=html&fmt=ahah

References

  1. Bivin D. B., Stoeckenius W. 1986; Photoactive retinal pigments in haloalkaliphilic bacteria. Journal of General Microbiology 132:2167–2177
    [Google Scholar]
  2. Blanck A., Oesterhelt D. 1987; The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO Journal 6:265–273
    [Google Scholar]
  3. Blanck A., Oesterhelt D., Ferrando E., Schegk E. S., Lotispeich F. 1989; Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor. EMBO Journal 8:3963–3971
    [Google Scholar]
  4. Dunn R., Mccoy J., Simesk J.M., Majumdar A., Chang S. H., Rajbhandary U. L., Khorana H. G. 1981; The bacterioopsin gene. Proceedings of the National Academy of Sciences of the United States of America 186744–6748
    [Google Scholar]
  5. Duschl A., Mccloskey M.A., Lanyi J. K. 1988; Functional reconstitution of halorhodopsin. Journal of Biological Chemistry 263:17016–17022
    [Google Scholar]
  6. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. 1990; Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology, 213:899–929
    [Google Scholar]
  7. Khorana H. G. 1988; Bacteriorhodopsin, a membrane protein that uses light to translocate protons. Journal of Biological Chemistry 263:7439–7442
    [Google Scholar]
  8. Khorana H. G., Gerber G. E., Herlihy W. C., Gray C. P., Anderegg R. J., Nihei K., Biemann K. 1979; Amino acid sequence of bacteriorhodopsin. Proceedings of the National Academy of Sciences of the United States of America 765046–5050
    [Google Scholar]
  9. Lanyi J. K., Duschl A., Hatfield G. W., May K., Oesterhelt D. 1990; The primary structure of a halorhodopsin from Natrono-bacterium pharaonis. Journal of Biological Chemistry 265:1253–1260
    [Google Scholar]
  10. Mogi T., Stern L. J., Marti T., Chao B. H., Khorana H. G. 1988; Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proceedings of the National Academy of Sciences of the United States of America 854148–4152
    [Google Scholar]
  11. Morn T., Stern L. J., Marti T., Chao B. H., Khorana H. G. 1989; Structure-function studies on Bacteriorhodopsin. VIII. Substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids. Journal of Biological Chemistry 264:14192–14196
    [Google Scholar]
  12. Mukohata Y., Sugiyama Y., Lhara K., Yoshida M. 1988; An. Australian halobacterium contains a novel proton pump retinal protein: archaerhodopsin. Biochemical and Biophysical Research Communications 151:1339–1345
    [Google Scholar]
  13. Mukohata Y., Ihara K., Uegaki K., Miyasaka Y., Sugiyama Y. 1991; Australian halobacteria and their retinal-protein ion pumps. Photochemistry and Photobiology 54:1039–1045
    [Google Scholar]
  14. Oesterhelt D., Stoeckenius W. 1971; Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biology 233:149–152
    [Google Scholar]
  15. Otomo J., Tomioka H., Sasabe H. 1992; Bacterial rhodopsins of newly isolated halobacteria. Journal of General Microbiology 138:1027–1037
    [Google Scholar]
  16. Otto H., Marti T., Holz M., Mom T., Stern L. J., Engel F., Khorana H. G., Heyn M. P. 1990; Substitution of amino acids Asp-85, Asp-96, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and pK of the Schiff base. Proceedings of the National Academy of Sciences of the United States of America 871018–1022
    [Google Scholar]
  17. Ovchinnikov Yu. A., Abdulaev N. G., Feigina M. Y., Kiselev A. V., Lobanov N. A. 1979; The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Letters 100:219–224
    [Google Scholar]
  18. Saiki G. K., Gelfand D. H., Stoffel S., Scharf S., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  19. Soppa J., Otomo J., Straub J., Tittor J., Meessen S., Oesterhelt D. 1989; Bacteriorhodopsin mutants of Halobacterium sp. GRB. II. Characterization of mutants. Journal of Biological Chemistry 264:13049–13056
    [Google Scholar]
  20. Stoeckenius W., Lozier R. H., Bogomolni R. A. 1979; Bacteriorhodopsin and the purple membrane of Halobacteria. Biochimica et Biophysica Acta 505:215–278
    [Google Scholar]
  21. Sugiyama Y., Maeda M., Futai M., Mukohata Y. 1989; Isolation of a gene that encodes a new retinal protein, archaerhodopsin, from Halobacterium sp. aus-1. Journal of Biological Chemistry 264:20859–20862
    [Google Scholar]
  22. Uegaki K., Sugiyama Y., Mukohata Y. 1991; Archaerhodopsin-2 from Halobacterium sp. aus-2 further reveals essential amino acid residues for light-driven proton pumps. Archives of Biochemistry and Biophysics 286:107–110
    [Google Scholar]
  23. Vogelsang H., Oertel W., Oesterhelt D. 1983; The isolation of the bacterioopsin gene. Methods in Enzymology 97:226–241
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-11-2389
Loading
/content/journal/micro/10.1099/00221287-138-11-2389
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error