1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-2879
1993-12-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-2879.html?itemId=/content/journal/micro/10.1099/00221287-139-12-2879&mimeType=html&fmt=ahah

References

  1. Anderson E., Dumont J.N. 1966; A comparative study of the concrement vacuole of certain endocommensal ciliates -a so-called mechanoreceptor. Journal of Ultrastructure Research 15:414–450
    [Google Scholar]
  2. Baroin A., Perasso R., Qu L.-H., Brugerolle G., Bachellerie J.-P., Adoutte A. 1988; Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proceedings of the National Academy of Sciences of the United States of America 853474–3478
    [Google Scholar]
  3. Baroin-Tourancheau A., Delgado P., Perasso R., Aduotte A. 1992; A broad molecular phylogeny of ciliates: identification of major evolutionary trends and radiations within the phylum. Proceedings of the National Academy of Sciences of the United States of America 899764–9768
    [Google Scholar]
  4. Behm C.A. 1991; Fumarate reductase and the evolution of electron transport systems. In Metazoan Life Without Oxygen pp. 88–108 Edited by Bryant C. London: Chapman and Hall;
    [Google Scholar]
  5. Benchimol M., De Souza W. 1983; Fine structure and cytochemistry of the hydrogenosome of Tritrichomonas foetus. Journal of Protozoology 30:422–425
    [Google Scholar]
  6. Broers C.A.M., Stumm C.K., Vogels G.D., Brugerolle G. 1990; Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. European Journal of Protistology 25:369–380
    [Google Scholar]
  7. Cavalier-Smith T. 1987; The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Annals of the New York Academy of Sciences 503:55–72
    [Google Scholar]
  8. Čerkasov J., Čerkasovová A., Kulda J., Vilhelmová D. 1978; Respiration of hydrogenosomes of Tritrichomonas foetus.I. ADP-dependent oxidation of malate and pyruvate. Journal of Biological Chemistry 253:1207–1214
    [Google Scholar]
  9. Čerkasov J., Čerkasovová A., Kulda J. 1980; Carbohydrate metabolism of Tritrichomonas foetus with particular reference to enzyme reactions occurring in hydrogenosomes. In Industrial and Clinical Enzymology, FEBS Symposia 61 pp. 257–275 Edited by Vitale L., Simeon V. Oxford: Pergamon Press;
    [Google Scholar]
  10. Čerkasovová A., Čerkasov J., Kulda J. 1984; Metabolic differences between metronidazole resistant and susceptible strains of Tritrichomonas foetus. Molecular and Biochemical Parasitology 11:105–118
    [Google Scholar]
  11. Chapman A., Hann A.C, Linstead D., Lloyd D. 1985; Energy-dispersive X-ray microanalysis of membrane-associated inclusions in hydrogenosomes isolated from Trichomonas vaginalis. Journal of General Microbiology 131:2933–2939
    [Google Scholar]
  12. Chapman A., Cammack R., Linstead D.J., Lloyd D. 1986; Respiration of Trichomons vaginalis. Components detected by electron paramagnetic resonance spectroscopy. European Journal of Biochemistry 156:193–198
    [Google Scholar]
  13. Declerck P.J., Müller M. 1987; Hydrogenosomal ATP: AMP phosphotransferase of Trichomonas vaginalis. Comparative Biochemistry and Physiology 88B:575–580
    [Google Scholar]
  14. Docampo R., Moreno S.N.J., Mason R.P. 1987; Free radical intermediates in the reaction of pyruvate: ferredoxin oxidoreductase in Tritrichomonas foetus hydrogenosomes. Journal of Biological Chemistry 262:12417–12420
    [Google Scholar]
  15. Doré J., Stahl D.A. 1991; Phylogeny of anaerobic rumen Chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Canadian Journal of Botany 69:1964–1971
    [Google Scholar]
  16. Embley T.M., Finlay B.J., Thomas R.H., Dyal P.L. 1992; The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial symbiont. Journal of General Microbiology 138:1479–1487
    [Google Scholar]
  17. Fenchel T., Finlay B.J. 1991a; The biology of free-living anaerobic ciliates. European Journal of Protistology 26:201–215
    [Google Scholar]
  18. Fenchel T., Finlay B.J. 1991b; Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for growth efficiency of the host. Journal of Protozoology 38:18–22
    [Google Scholar]
  19. Fenchel T., Finlay B.J. 1992; Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Archives of Microbiology 157:475–480
    [Google Scholar]
  20. Finlay B.J., Fenchel T. 1989; Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiology Letters 65:311–314
    [Google Scholar]
  21. Finlay B.J., Fenchel T. 1993; Methanogens and other bacteria as symbionts of free-living anaerobic ciliates. Symbiosis 14:375–390
    [Google Scholar]
  22. Finlay B.J., Embley T.M., Fenchel T. 1993; A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate, Trimyema sp. Journal of General Microbiology 139:371–378
    [Google Scholar]
  23. Goosen N.K., Wagener S., Stumm C.K. 1990a; A comparison of two strains of the anaerobic ciliate Trimyema compressum. Archives of Microbiology 153:187–192
    [Google Scholar]
  24. Goosen N.K., Van Der Drift C., Stumm C.K., Vogels G.D. 1990b; End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiology Letters 69:171–176
    [Google Scholar]
  25. Gorrell T.E., Yarlett N., Müller M. 1984; Isolation and characterization of Trichomonas vaginalis ferredoxin. Carlsberg Research Communications 49:259–268
    [Google Scholar]
  26. Honigberg B.M., Volkmann D., Entzeroth R., Scholtyseck E. 1984; A freeze-fracture electron microscope study of Trichomonas vaginalis Donné and Tritrichomonas foetus (Riedmüller). Journal of Protozoology 31:116–131
    [Google Scholar]
  27. Hrdý I., Mertens E. 1993; Purification and partial characterization of malate dehydrogenase (decarboxylating) from Tritrichomonas foetus hydrogenosomes. Parasitology in the Press
    [Google Scholar]
  28. Hrdý I., Mertens E., Van Schaftingen E. 1993; Identification, purification and separation of different isozymes of NADP-specific malic enzyme from Tritrichomonas foetus. Molecular and Biochemical Parasitology 57:253–260
    [Google Scholar]
  29. Jenkins T.M., Gorrell T.E., Müller M., Weitzman P.D.J. 1991; Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochemical and Biophysical Research Communications 179:892–896
    [Google Scholar]
  30. Johnson P.J., D’Oliveira C.E., Gorrell T.E., Müller M. 1990; Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist, Trichomonas vaginalis. Proceedings of the National Academy of Sciences of the United States of America 876097–6101
    [Google Scholar]
  31. Johnson P.J., Lahti C.J., Bradley P.J. 1993; Biogenesis of the hydrogenosome in the anaerobic protist, Trichomonas vaginalis. Journal of Parasitology 79:664–670
    [Google Scholar]
  32. Keller G.-A., Krisans S., Gould S.J., Sommer J.M., Wang C.C., Schliebs W., Kunau W., Brody S., Subramani S. 1991; Evolutionary conservation of a microbody targeting signal protein that targets proteins to peroxisomes, glyoxysomes, and glycosomes. Journal of Cell Biology 114:893–904
    [Google Scholar]
  33. Kulda J., Tachezy J., Čerkasovová A. 1993; In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. Journal of Eukaryotic Microbiology 40:262–269
    [Google Scholar]
  34. Lahti C.J., Johnson P.J. 1991; Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Molecular and Biochemical Parasitology 46:307–310
    [Google Scholar]
  35. Lahti C.J., D’Oliveira C.E., Johnson P.J. 1992; β-Succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. Journal of Bacteriology 174:6822–6830
    [Google Scholar]
  36. Leipe D.D., Gunderson J.H., Nerad T.A., Sogin M.L. 1993; Small subunit ribosomal RNA of Hexamita infiata and the quest for the first branch in the eukaryotic tree. Molecular and Biochemical Parasitology 59:41–48
    [Google Scholar]
  37. Lindmark D.G. 1976; Acetate production in Tritrichomonas foetus. In Biochemistry of Parasites and Host-Parasite Relationships pp. 16–21 Edited by Van Den Bossche H. Amsterdam: North-Holland;
    [Google Scholar]
  38. Lindmark D.G., Müller M. 1973; Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry 248:7724–7728
    [Google Scholar]
  39. Lindmark D.G., Müller M. 1974a; Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. Journal of Biological Chemistry 249:4634–4637
    [Google Scholar]
  40. Lindmark D.G., Müller M. 1974b; Biochemical cytology of trichomonad flagellates.II.Subcellular distribution of oxido-reductases and hydrolases in Monocercomonas sp. Journal of Protozoology 21:374–378
    [Google Scholar]
  41. Lindmark D.G., Müller M., Shio H. 1975; Hydrogenosomes in Trichomonas vaginalis. Journal of Parasitology 61:552–554
    [Google Scholar]
  42. Lindmark D.G., Eckenrode B.L., Halberg L.A., Dinbergs I.D. 1989; Carbohydrate, energy and hydrogenosomal metabolism of Tritrichomonas foetus and Trichomonas vaginalis. Journal of Protozoology 36:214–216
    [Google Scholar]
  43. Lloyd D., Lindmark D.G., Müller M. 1979a; Adenosine triphosphatase activity of Tritrichomonas foetus. Journal of General Microbiology 115:301–307
    [Google Scholar]
  44. Lloyd D., Lindmark D.G., Müller M. 1979b; Respiration of Tritrichomonas foetus: absence of detectable cytochromes. Journal of Parasitology 65:466–469
    [Google Scholar]
  45. Lloyd D., Hillman K., Yarlett N., Williams A.G. 1989; Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions. Journal of Protozoology 36:205–213
    [Google Scholar]
  46. Marczak R., Gorrell T.E., Müller M. 1983; Hydrogenosomal ferredoxin of the anaerobic protozoon Tritrichomonas foetus. Journal of Biological Chemistry 258:12427–12433
    [Google Scholar]
  47. Marvin-Sikkema F.D., Lahpor G.A., Kraak M.N., Gottschal J.C., Prins R.A. 1992; Characterization of an anaerobic fungus from llama faeces. Journal of General Microbiology 138:2235–2241
    [Google Scholar]
  48. Marvin-Sikkema F.D., Pedro Gomes T.M., Grivet J.-P., Gottschal J.C., Prins R.A. 1993a; Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp.L2. Archives of Microbiology in the Press
    [Google Scholar]
  49. Marvin-Sikkema F.D., Driessen A.J.M., Gottschal J.C., Prins R.A. 1993b; Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix: evidence for a functional relationship with mitochondria. Mycological Research 160:388–396
    [Google Scholar]
  50. Marvin-Sikkema F.D., Kraak M.N., Veenhuis M., Gottschal J.C., Prins R.A. 1993c; The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp.L2 is recognized by antibodies, directed against the C-terminal microbody targeting signal SKL. European Journal of Cell Biology 61:86–91
    [Google Scholar]
  51. Mertens E. 1993; ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitology Today 9:122–126
    [Google Scholar]
  52. Mertens E., Van Schaftingen E., Müller M. 1992; Pyruvate kinase from Trichomonas vaginalis, an allosteric enzyme stimulated by ribose 5-phosphate and glycerate 3-phosphate. Molecular and Biochemical Parasitology 54:13–20
    [Google Scholar]
  53. Müller M. 1973; Biochemical cytology of trichomonad flagellates.I.Subcellular localization of hydrolases, dehydrogenases, and catalase in Tritrichomonas foetus. Journal of Cell Biology 57:453–474
    [Google Scholar]
  54. Müller M. 1980; The hydrogenosome. Symposia of the Society for General Microbiology 30:127–142
    [Google Scholar]
  55. Müller M. 1986; Reductive activation of nitroimidazoles in anaerobic microorganisms. Biochemical Pharmacology 35:37–41
    [Google Scholar]
  56. Müller M. 1988; Energy metabolism of protozoa without mitochondria. Annual Review of Microbiology 42:465–488
    [Google Scholar]
  57. Müller M., Gorrell T.E. 1983; Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrobial Agents and Chemotherapy 24:667–673
    [Google Scholar]
  58. O’fallon J.V., Wright R.W., Calza R.E. 1991; Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochemical Journal 274:595–599
    [Google Scholar]
  59. Ohnishi T., Lloyd D., Lindmark D.G., Müller M. 1980; Respiration of Tritrichomonas foetus. Components detected in hydrogenosomes and in intact cells by electron paramagnetic resonance spectrometry. Molecular and Biochemical Parasitology 2:39–50
    [Google Scholar]
  60. Paget T.A., Lloyd D. 1990; Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for optimal growth. Molecular and Biochemical Parasitology 41:65–72
    [Google Scholar]
  61. Paltauf F., Meingassner J.G. 1982; The absence of cardiolipin in hydrogenosomes of Trichomonas vaginalis and Tritrichomonas foetus. Journal of Parasitology 68:949–950
    [Google Scholar]
  62. Paul R.G., Williams A.G., Butler R.D. 1990; Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. Journal of General Microbiology 136:388–396
    [Google Scholar]
  63. Payne M.J., Chapman A., Cammack R. 1993; Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Letters 317:101–104
    [Google Scholar]
  64. Ryley J.F. 1955; Studies on the metabolism of the protozoa.5.Metabolism of the parasitic flagellate Trichomonas foetus. Biochemical Journal 59:361–369
    [Google Scholar]
  65. Snyers L., Hellings P., Bovy-Kesler C., Thines-Sempoux D. 1982; Occurrence of hydrogenosomes in the rumen ciliates Ophryoscolecidae. FEBS Letters 137:35–39
    [Google Scholar]
  66. Sogin M.L. 1991; Early evolution and the origin of eukaryotes. Current Opinion in Genetics and Development 1:457–463
    [Google Scholar]
  67. Steinbuchel A., Müller M. 1986a; Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Molecular and Biochemical Parasitology 20:45–55
    [Google Scholar]
  68. Steinbuchel A., Müller M. 1986b; Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Molecular and Biochemical Parasitology 20:57–65
    [Google Scholar]
  69. Turner G., Müller M. 1983; Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritrichomonas foetus. Journal of Parasitology 69:234–236
    [Google Scholar]
  70. Van Bruggen J.J.A., Stumm C.K., Vogels G.D. 1983; Symbiosis of methanogenic bacteria and sapropelic protozoa. Archives of Microbiology 136:89–95
    [Google Scholar]
  71. Van Bruggen J.J.A., Zwart K.B., Van Assema R.M., Stumm C.K., Vogels G.D. 1984; Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Archives of Microbiology 139:1–7
    [Google Scholar]
  72. Viscogliosi E., Philippe H., Baroin A., Perasso R., Brugerolle G. 1993; Phytogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. Journal of Eukaryotic Microbiology 40:411–421
    [Google Scholar]
  73. Wagener S., Bardele C.F., Pfennig N. 1990; Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Archives of Microbiology 153:496–501
    [Google Scholar]
  74. Wang A.L., Wang C.C. 1985; Isolation and characterization of DNA from Tritrichomonas foetus and Trichomonas vaginalis. Molecular and Biochemical Parasitology 14:323–335
    [Google Scholar]
  75. Whatley J.M., John P., Whatley F.R. 1979; From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proceedings of the Royal Society of London B204165–187
    [Google Scholar]
  76. Williams A.G. 1986; Rumen holotrich ciliate protozoa. Microbiological Reviews 50:25–49
    [Google Scholar]
  77. Williams K., Lowe P.N., Leadlay P.F. 1987; Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochemical Journal 246:529–536
    [Google Scholar]
  78. Yarlett N. 1994; Fermentation product generation in rumen chytridiomycetes. In The Anaerobic Fungi Edited by Mountfort D.O., Orpin C.G. New York: Marcel Dekker;
    [Google Scholar]
  79. Yarlett N., Hann A.C., Lloyd D., Williams A. 1981; Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochemical Journal 200:365–372
    [Google Scholar]
  80. Yarlett N., Lloyd D., Williams A.G. 1982; Respiration of the rumen ciliate Dasvtricha ruminantium Schuberg. Biochemical Journal 206:259–266
    [Google Scholar]
  81. Yarlett N., Hann A.C., Lloyd D., Williams A.G. 1983; Hydrogenosomes in a mixed isolate of Isotricha prostoma and Jsotricha intestinalis from ovine rumen contents. Comparative Biochemistry and Physiology 74B:357–364
    [Google Scholar]
  82. Yarlett N., Coleman G.S., Williams A.G., Lloyd D. 1984; Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiology Letters 21:15–19
    [Google Scholar]
  83. Yarlett N., Lloyd D., Williams A.G. 1985; Butyrate formation from glucose by the rumen protozoon Dasytricha ruminantium. Biochemical Journal 228:187–192
    [Google Scholar]
  84. Yarlett N., Orpin C.G., Munn E.A., Yarlett N.C., Greenwood C.A. 1986a; Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochemical Journal 236:729–739
    [Google Scholar]
  85. Yarlett N., Yarlett N.C., Lloyd D. 1986b; Metronidazole resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Molecular and Biochemical Parasitology 19:111–116
    [Google Scholar]
  86. Zwart K.B., Goosen N.K., Van Schijndel M.W., Broers C.A.M., Stumm C.K., Vogels G.D. 1988; Cytochemical localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. Journal of General Microbiology 134:2165–2170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-2879
Loading
/content/journal/micro/10.1099/00221287-139-12-2879
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error