1887

Abstract

Nucleotide sequencing revealed that the structural gene of UDP-glucose pyrophosphorylase (EC 2.7.7.9), is part of a divergon-like genetic entity. The latter consists of two monocistronic operons and transcribed from a 245 bp regulatory region, each encoding an acidic protein with a molecular mass of 33·0 and 42·6 kDa, respectively. is transcribed from a distal P promoter, and a proximal P promoter which is negatively controlled by the Sin protein. Sin-mediated transcriptional attenuation and enhancement of P and P, respectively, suggest that these promoters control functions which antagonize each other. Transcription of is mediated by a P promoter. The regulatory region comprises four ATGAAA hexamers, present as two inverse repeats. Protein GtaB exhibits high homology to analogous prokaryotic enzymes, while OrfX shows 55·4% homology with the product of which is part of a regulatory unit involved in sugar processing. Mutations and which define different bacteriophage adsorption patterns, were sequenced. They are transitions leading to substitution of amino acids which occupy conserved positions, and are thus likely to be part of an enzyme active site. The nature of the possible receptors for defective bacteriophages PBSY and PBSZ is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3185
1993-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3185.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3185&mimeType=html&fmt=ahah

References

  1. Baddiley J. 1970; Structure, biosynthesis and function of teichoic acids. Accounts of Chemical Research 3:98–105
    [Google Scholar]
  2. Boylan S.A., Kalman S., Duncan M.L., Thomas S.M., Price C.W. 1990; Two genes dependent on Bacillus subtilis σB are expressed in stationary phase under non-sporulating conditions. In Genetics and Biotechnology of Bacilli 3 pp. 377–384 Zukowski M.M., Genesan A.T., Hoch J.A. Edited by San Diego: Academic Press;
    [Google Scholar]
  3. Brede G., FlÆrvik E., Valla S. 1991; Nucleotide sequence and expression analysis of the Acetobacter xylinum uridine diphospho-glucose pyrophosphorylase gene. Journal of Bacteriology 173:7042–7045
    [Google Scholar]
  4. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. 1988; The pMTL nic-cloning vectors. I. Improved pUC polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  5. Chung C.T., Miller R.H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Research 16:3580
    [Google Scholar]
  6. Daniels D., Plunkett G.III Burland V., Blattner F.R. 1992; Analysis of the Escherichia coli genome: DNA sequence of the region from 84·5 to 86·5 minutes. Science 257:771–778
    [Google Scholar]
  7. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Research 16:9878
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. Dubnau D., Goldthwaite C., Smith J., Marmur J. 1967; Genetic mappng in Bacillus subtilis. Journal of Molecular Biology 27:163–185
    [Google Scholar]
  10. Duckworth M., Archibald A.R., Baddiley J. 1972; The location of N-acetylgalactosamine in the walls of Bacillus subtilis168. Biochemical Journal 130:691–696
    [Google Scholar]
  11. Estrela A.-I. 1991 Components da parede celular envolvidos na adsorgao de fagos temperados de Bacillus subtilis. PhD thesis University of Lisboa Portugal.:
    [Google Scholar]
  12. Estrela A.-I., Pooley H.M., De Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the techoic acid poly(3-O-β-d-glucopyranosyl-N- acetylgalactosamine 1-phosphate):gneA, a new locus, is associated with UDP-N-acetylglucosamine 4-epimerase activity. Journal of General Microbiology 137:943–950
    [Google Scholar]
  13. Fein J.E., Rogers H.J. 1976; Autolytic enzyme-deficient mutants in Bacillus subtilis 168. Journal of Bacteriology 127:1427–1442
    [Google Scholar]
  14. Ferrari F.A., Nguyen A., Lang D., Hoch J.A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  15. Gaur N.K., Dubnau E., Smith I. 1986; Characterisation of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. Journal of Bacteriology 168:860–869
    [Google Scholar]
  16. Gilman M.Z., Chamberlin M.J. 1983; Developmental and genetic regulation of Bacillus subtilis genes transcribed by σ28-RNA polymerase. Cell 35:285–293
    [Google Scholar]
  17. Hassid W.Z. 1969; Biosynthesis of oligosaccharides and polysac-charides in plants. Science 165:137–144
    [Google Scholar]
  18. Heery D.M., Gannon F., Powell R. 1990; A simple method for subcloning DNA fragments from gel slices. Trends in Genetics 6:173
    [Google Scholar]
  19. Ionesco H., Ryter A., Schaeffer P. 1964; Sur un bactériophage hébergé par la souche Marburg de Bacillus subtilis. Annales de l’Institut Pasteur 107:764–776
    [Google Scholar]
  20. Jiang X.-M., Neal B., Santiago F., Lee S.J., Romana L.K., Reeves P.R. 1991; Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Molecular Microbiology 5:695–713
    [Google Scholar]
  21. Jones K.A., Yamamoto K.R., Tjian R. 1985; Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42:559–572
    [Google Scholar]
  22. Karamata D., Gross J.D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Molecular and General Genetics 108:277–287
    [Google Scholar]
  23. Karamata D., Pooley H.M., Monod M. 1987; Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168. Molecular and General Genetics 207:73–81
    [Google Scholar]
  24. Katsube T., Kazuta Y., Mori H., Nakano K., Tanizawa K., Fukui T. 1990; UDP-glucose pyrophosphorylase from potato tuber: cDNA cloning and sequencing. Journal of Biochemistry 108:321–326
    [Google Scholar]
  25. Kuroda A., Sekiguchi J. 1993; High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. Journal of Bacteriology 175:795–801
    [Google Scholar]
  26. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N- acetylmuramoyl-l-alanine amidase and its modifier. Journal of General Microbiology 138:1949–1961
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  28. Mauck J., Glaser L. 1970; Periplasmic nucleoside diphosphate sugar hydrolase from Bacillus subtilis. Biochemistry 9:1140–1147
    [Google Scholar]
  29. Mauël C., Karamata D. 1984; Prophage induction in thermo-sensitive DNA mutants of Bacillus subtilis. Molecular and General Genetics 194:451–456
    [Google Scholar]
  30. Mauël C., Young M., Margot P., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Molecular and General Genetics 215:388–394
    [Google Scholar]
  31. Miller K.J., Kennedy E.P., Reinhold V.N. 1986; Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51
    [Google Scholar]
  32. Pooley H.M., Karamata D. 1984; Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. Journal of Bacteriology 160:1123–1129
    [Google Scholar]
  33. Pooley H.M., Paschoud D., Karamata D. 1987; The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. Journal of General Microbiology 133:3481–3493
    [Google Scholar]
  34. Ragheb J.A., Dottin R.P. 1987; Structure and sequence of a UDP glucose pyrophosphorylase gene of Dictyostelium discoideum. Nucleic Acids Research 15:3891–3906
    [Google Scholar]
  35. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  36. Schulman H., Kennedy E.P. 1977; Identification of UDPglucose as an intermediate in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Journal of Biological Chemistry 252:6299–6303
    [Google Scholar]
  37. Shedlovsky A., Brenner S. 1963; A chemical basis for the host-induced modification of T-even bacteriophages. Proceedings of the National Academy of Sciences of the United States of America 50:300–305
    [Google Scholar]
  38. Shibaev V.M., Duckworth M., Archibald A.R., Baddiley J. 1973; The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochemical Journal 135:383–384
    [Google Scholar]
  39. Sundararajan T.A., Rapin A.M.C., Kalckar H.M. 1962; Biochemical observation on E. coli mutants defective in uridine diphosphoglucose. Proceedings of the National Academy of Sciences of the United States of America 48:2187–2192
    [Google Scholar]
  40. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  41. White A., Handler P., Smith E.L. 1973 Principles of Biochemistry, 5th edn.. Kogakusha: McGraw-Hill;
    [Google Scholar]
  42. Young F.E. 1967; Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proceedings of the National Academy of Sciences of the United States of America 58:2377–2384
    [Google Scholar]
  43. Young F.E., Smith C., Reilly B.E. 1969; Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. Journal of Bacteriology 98:1087–1097
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3185
Loading
/content/journal/micro/10.1099/00221287-139-12-3185
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error