1887

Abstract

A gene encoding the extracellular α-amylase of MCC-1 was cloned and expressed using its own promoter on the recombinant plasmid pCA101. Subcellular fractionation of JA221 carrying pCA101 revealed that approximately 60% of the amylase activity was localized in the periplasmic space. The extracellular amylase was purified to homogeneity, identified as an α-type and its amino-terminal sequence was determined. Nucleotide sequence analysis predicted a 443 amino acid ORF and 24 amino acids at the amino terminus of the sequence that are not found in the secreted protein. This 24 amino acid sequence has many of the characteristics common to known signal peptides. The predicted amino acid sequence has considerable similarity with mammalian, invertebrate and Streptomycete α-amylases. Most of the amino acid residues that are involved in catalytic activity, substrate binding and calcium binding in several α-amylases were also present in α-amylase at the corresponding positions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-12-3215
1993-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/12/mic-139-12-3215.html?itemId=/content/journal/micro/10.1099/00221287-139-12-3215&mimeType=html&fmt=ahah

References

  1. Beggs J.D. 1978; Transformation of yeast by a replicating hybrid plasmid. Nature; London: 275104–108
    [Google Scholar]
  2. Boer P.H., Hickey D.A. 1986; The α-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Resarch 14:8399–8411
    [Google Scholar]
  3. Bolivar F., Rodriguez R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S. 1977; Construction and characterization of new cloning vehicles, II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  4. Buisson G., Duee E., Haser R., Payan F. 1987; Three-dimensional structure of porcine pancreatine α-amylase at 2·9 Å resolution. Role of calcium in structure and activity. EMBO Journal 6:3909–3916
    [Google Scholar]
  5. Chakraborty T., Montenegro M.A., Sanyal S.C., Helmuth R., Bulling E., Timmis K.N. 1984; Cloning of enterotoxin gene from Aeromonas hydrophila provides conclusive evidence of production of a cytotoxic enterotoxin. Infection and Immunity 46:435–441
    [Google Scholar]
  6. Chakraborty T., Huhle B., Bergbauer H., Goebel W. 1986; Cloning, expression, and mapping of the Aeromonas hydrophila aerolysin gene determinant in Escherichia coli K-12. Journal of Bacteriology 167:368–374
    [Google Scholar]
  7. Chang M.C., Chang S.Y., Chen S.L., Chuang S.M. 1992; Cloning and expression in Escherichia coli of the gene encoding an extracellular deoxyribonuclease (DNase) from Aeromonas hydrophila. Gene 122:175–180
    [Google Scholar]
  8. Chen J.P., Nagayama F., Chang M.C. 1991; Cloning and expression of a chitinase gene from Aeromonas hydrophila in Escherichia coli. Applied and Environmental Microbiology 57:2426–2428
    [Google Scholar]
  9. Cornelis P., Digneffe C., Willemot K. 1982; Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Molecular and General Genetics 186:507–511
    [Google Scholar]
  10. Freundlieb S., Boos W. 1986; α-Amylase of Escherichia coli, mapping and cloning of the structural gene, malS, and identification of its product as a periplasmic protein. Journal of Biological Chemistry 261:2946–2953
    [Google Scholar]
  11. Gobius K.S., Pemberton J.M. 1988; Molecular cloning, characterization, and nucleotide sequence of an extracellular amylase gene from Aeromonas hydrophila. Journal of Bacteriology 170:1325–1332
    [Google Scholar]
  12. Hagenbuechle O., Bovey R., Young R.A. 1980; Tissue specific expression of mouse α-amylase genes: nucleotide sequence of isozyme mRNAs from pancreas and salivary gland. Cell 21:179–187
    [Google Scholar]
  13. Hofmann O., Vertesy L., Braunitzer G. 1985; The primary structure of α-amylase inhibitor Z-2685 from Streptomyces parvulus, FH-1641. Biological Chemistry Hoppe-Seyler 366:1161–1168
    [Google Scholar]
  14. Hoshiko S., Makabe O., Nojiri C., Katsumata K., Satoh E., Nagaoka K. 1987; Molecular cloning and characterization of the Streptomyces hygroscopicus α-amylase gene. Journal of Bacteriology 169:1029–1036
    [Google Scholar]
  15. Howard S.P., Buckley J.T. 1983; Intracellular accumulation of extracellular proteins by pleiotropic export mutants of Aeromonas hydrophila. Journal of Bacteriology 154:413–418
    [Google Scholar]
  16. Howard S.P., Buckley J.T. 1985; Protein export by a Gram-negative bacterium: production of aerolysin by Aeromonas hydrophila. Journal of Bacteriology 161:1118–1124
    [Google Scholar]
  17. Howard S.P., Buckley J.T. 1986; Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila. Molecular and General Genetics 204:289–295
    [Google Scholar]
  18. Howard S.P., Garland W.J., Green M.J., Buckley J.T. 1987; Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. Journal of Bacteriology 169:2869–2871
    [Google Scholar]
  19. Jiang B., Howard S.P. 1991; Mutagenesis and isolation of Aeromonas hydrophila genes which are required for extracellular secretion. Journal of Bacteriology 173:1241–1249
    [Google Scholar]
  20. Jiang B., Howard S.P. 1992; The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway. Molecular Microbiology 6:1351–1361
    [Google Scholar]
  21. Kluh I. 1981; Amino acid sequence of hog pancreatic α-amylase isoenzyme I. FEBS Letters 136:231–234
    [Google Scholar]
  22. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227681–685
    [Google Scholar]
  23. Leung K.Y., Stevenson R.M.W. 1988; Characteristics and distribution of extracellular proteases from Aeromonas hydrophila. Journal of General Microbiology 134:151–160
    [Google Scholar]
  24. Lipman D.J., Pearson W.R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  25. Long C.M., Virolle M.-J., Chang S.-Y., Chang S., Bibb M.J. 1987; The α-amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs and amino-acid sequence homology to mammalian and invertebrate α-amylases. Journal of Bacteriology 169:5745–5754
    [Google Scholar]
  26. Mcclure W.R. 1985; Mechanism and control of transcription initiation in prokaryotes. Annual Review of Biochemistry 54:171–204
    [Google Scholar]
  27. Macdonald R.J., Crerar M.M., Swain W.F., Pictet R.L., Thomas G., Rutter W.J. 1980; Structure of a family of rat amylase genes. Nature; London: 287117–122
    [Google Scholar]
  28. Macintyre S., Buckley J.T. 1978; Presence of glycerophospho-lipid: cholesterol acyltransferase and phospholipase in culture supernatant of Aeromonas hydrophila. Journal of Bacteriology 135:402–407
    [Google Scholar]
  29. Matsuura Y., Kusunoki M., Harada W., Kakudo M. 1984; Structure and possible catalytic residues of Taka-amylase A. Journal of Biochemistry 95:697–702
    [Google Scholar]
  30. Nakajima R., Imanaka T., Aiba S. 1986; Comparison of amino acid sequences of eleven different α-amylases. Applied and Microbiological Biotechnology 23:355–360
    [Google Scholar]
  31. Nishide T., Emi M., Nakamura Y., Matsubara K. 1986; Corrected sequences of cDNAs for human salivary and pancreatic α-amylases. Gene 50:371–372
    [Google Scholar]
  32. Nord C.E., Sjoberg L., Wadstrom T., Wretlind B. 1975; Characterization of three Aeromonas and nine Pseudomonas species by extracellular enzymes and hemolysins. Medical Microbiology and Immunology 161:79–87
    [Google Scholar]
  33. Pugsley A.P., D’enfert C., Reyss I., Kornacker M.G. 1990; Genetics of extracellular protein secretion by Gram-negative bacteria. Annual Review of Genetics 24:67–90
    [Google Scholar]
  34. Rivero O., Anguita J., Paniagua C., Naharro G. 1990; Molecular cloning and characterization of an extracellular protease gene from Aeromonas hydrophila. Journal of Bacteriology 172:3905–3908
    [Google Scholar]
  35. Rogers J.C. 1985; Conserved amino acid sequence domains in α-amylase from plants, mammals and bacteria. Biochemical and Biophysical Research Communications 128:470–476
    [Google Scholar]
  36. Rogers J.C., Milliman C. 1983; Isolation and sequence analysis of a barley α-amylase cDNA clone. Journal of Biological Chemistry 258:8169–8174
    [Google Scholar]
  37. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  39. Shine J., Dalgarno L. 1974; The 3ʹ-terminal sequence of Escherichia coli 16S ribosomal RNA: complementary to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71:1342–1346
    [Google Scholar]
  40. Stormo G.D., Schneider T.D., Gold L.M. 1982; Characterization of translational initiation sites in Escherichia coli. Nucleic Acids Research 10:2971–2996
    [Google Scholar]
  41. Suominen H., Karp M., Lahde M., Kopio A., Glumoff T., Meyer P., Mantsala P. 1987; Extracellular production of cloned α-amylase by Escherichia coli. Gene 61:165–176
    [Google Scholar]
  42. Thornton J., Howard S.P., Buckley J.T. 1988; Molecular cloning of a phospholipid-cholesterol acyltransferase from Aeromonas hydrophila. Sequence homologies with lecithin-cholesterol acyltransferase and other lipases. Biochimica et Biophvsica Acta 959:153–159
    [Google Scholar]
  43. Toda H., Kondo K., Narita K.. 1982; The complete amino acid sequence of Taka-amylase A. Proceedings of the Japan Academy 58:208–212
    [Google Scholar]
  44. Vieira J., Messing J. 1982; The pUC plasmids, and M13mp7 derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  45. Virolle M.J., Long C.M., Chang S., Bibb M.J. 1988; Cloning, characterisation and regulation of an α-amylase gene from Streptomyces venezuelae. Gene 74:321–334
    [Google Scholar]
  46. Von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 133:17–21
    [Google Scholar]
  47. Von Heijne G. 1984; How signal sequences maintain cleavage specificity. Journal of Molecular Biology 173:243–251
    [Google Scholar]
  48. Von Heijne G. 1988; Transcending the impenetrable: how proteins come to terms with membranes. Biochimica et Biophysica Acta 947:307–333
    [Google Scholar]
  49. Yabuki M., Mizushina K., Amatatsu T., Ando A., Fuji T., Shimada M., Yamashita M. 1986; Purification and characterization of chitinase and chitobiase produced by Aeromonas hydrophila subsp. anaerogenes A52. Journal of General and Applied Microbiology 32:25–38
    [Google Scholar]
  50. Yang M., Galizzi A., Henner D. 1983; Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Research 11:237–249
    [Google Scholar]
  51. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpI8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-12-3215
Loading
/content/journal/micro/10.1099/00221287-139-12-3215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error