1887

Abstract

Using translational fusions to lacZ, we have measured expression from the promoters of regulatory genes, and , and structural genes, and , in other fast-growing rhizobia whose nitrogen fixation regulation is less known. Neither nor promoters were activated under both free-living microaerobic and symbiotic conditions, except in , where clear symbiotic activation of either or expression could be observed. Both and promoters showed strong heterologous activation during symbiosis and weak activation under free-living nitrogen starvation conditions. Only when the promoter was in and bv. phaseoli, was clear induction observed in the microaerobic free-living state. Deletion analysis of these promoters suggested that a NifA binding site (UAS) was needed for full heterologous activation of , either in microaerobiosis or symbiosis. In contrast, the UAS region seemed to be unnecessary for fixA activation. However, a region containing a potential integration host factor (IHF) binding site was observed to be needed for complete heterologous symbiotic induction from fixAp. The moderate induction observed in nitrogen-free medium only required the holoenzyme recognition sequence; this may be indicative of the existence of non-specific activation by NtrC-like proteins. Our results suggest possible common and different features in the control mechanisms of the nitrogen fixation gene expression among Rhizobium species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-3-443
1994-03-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/3/mic-140-3-443.html?itemId=/content/journal/micro/10.1099/00221287-140-3-443&mimeType=html&fmt=ahah

References

  1. Agron P., Ditta G., Helinski D.R. Mutational analysis of the Rhizobium meliloti nifA promoter. J Bacteriol 1992; 174:4120–4129
    [Google Scholar]
  2. Albright L.M., Huala E., Gu Q., Ausubel F.E. Regulation of R. meliloti NifA function. In Nitrogen Fixation: Hundred Years After 1988 Edited by Bothe H., De Bruijn F.J., Newton W.E. Stuttgart: Gustav Fischer; pp 345–349
    [Google Scholar]
  3. Alvarez-Morales A., Hennecke H. Expression of Rhizobium japonicum nifH and niJDK operons can be activated by the Klebsiella pneumoniae nifA protein but not by the product of ntrC. Mol & Gen Genet 1985; 199:306–314
    [Google Scholar]
  4. Anthamatten D., Hennecke H. The regulatory status of the fixE and fixJ genes in Bradyrhitpbium japonicum may be different from that in Rhivpbium meliloti. Mol & Gen Genet 1991; 225:38–48
    [Google Scholar]
  5. Anthamatten D., Scherb B., Hennecke H. Characterization of a fixLJ-regulated Bradyrhiipbium japonicum gene sharing similarity with the Escherichia coli fnr and Rhitpbium meliloti fixK genes. J Bacteriol 1992; 174:2111–2120
    [Google Scholar]
  6. Batut J., Daveran M.L., David M., Jacobs J., Garnerone A.M., Kahn D. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhispbium meliloti. EMBO J 1989; 8:1279–1286
    [Google Scholar]
  7. Batut J., Santero E., Kustu S. In vitro activity of the nitrogen fixation regulatory protein FixJ from Rhispbium meliloti. J Bacteriol 1991; 173:5914–5917
    [Google Scholar]
  8. Better M., Lewis B., Corbin D., Ditta G., Helinski D.R. Structural relationships among Rhitpbium meliloti symbiotic promoters. Cell 1983; 35:379–385
    [Google Scholar]
  9. Better M., Ditta G., Helinski D.R. Deletion analysis of Rhipbium meliloti symbiotic promoters. EMBO J 1985; 4:2419–2424
    [Google Scholar]
  10. Birkenhead K., Nooman B., Reville W.J., Boesten B., Manian S.S., & O' Gara F. Carbon utilization and regulation of nitrogen fixation genes in Rhipbium meliloti. Mol Plant-Microbe Interact 1990; 3:167–173
    [Google Scholar]
  11. Boyer H.W., Roulland-Dussoix D. A complementation analysis of restriction and modification in Escherichia coli. J Mol Biol 1969; 41:459–472
    [Google Scholar]
  12. Buck M., Cannon W. Mutation in the RNA polymerase recognition sequence of Klebsiella pneumoniae nifH promoter permitting transcriptional activation in the absence of NifA binding to upstream activator sequences. Nucleic Acids Rw 1989; 17:2597–2612
    [Google Scholar]
  13. Buck M., Miller S., Drummond M., Dixon R. Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature 1988; 320:374–378
    [Google Scholar]
  14. Claverie-Martfn F., Magasanik B. Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci USA 1991; 88:1631–1635
    [Google Scholar]
  15. Colonna-Romano S., Arnold W., SchlUter A., Boistard P., PUhler A., Preifer U.B. An Fnr-like protein encoded in Rhipbium leguminosarum biovar viciae shows structural and functional homology to Rhipbium meliloti FixK. Mol & Gen Genet 1990; 223:138–147
    [Google Scholar]
  16. Corbin D., Barran L., Ditta G. Organization and expression of Rhipbium meliloti nitrogen fixation genes. Proc Natl Acad Sci USA 1983; 80:3005–3009
    [Google Scholar]
  17. David M., Daveran M.L., Batut J., Dedien A., Domergue O., Ghai J., Hertig C., Boistard P., Kahn D. Cascade regulation of nif gene expression in Rhipbium meliloti. Cell 1988; 54:671–683
    [Google Scholar]
  18. Ditta G., Stanfield S., Corbin D., Helinski D.R. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhipbium meliloti. Proc Natl Acad Sci USA 1980; 77:7347–7351
    [Google Scholar]
  19. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.-W., Finlay D.R., Guiney D., Helinski D.R. Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 1985; 13:149–153
    [Google Scholar]
  20. Ditta G., Virts E., Palomares A., Kim C.K. The nif A gene of Rhipbium meliloti is oxygen regulated. J Bacteriol 1987; 169:3217–3223
    [Google Scholar]
  21. Ditta G., Virts E., Helinski D.R. Oxygen regulation of nif genes in Rhipbium meliloti. In Molecular Genetics of Plant-Microbe Interactions 1988 Edited by Verma D.P.S., Palacios R. Saint Paul, MN: APS Press; pp 109–110
    [Google Scholar]
  22. Dowdle S.F., Bohlool B.B. Predominance of fast- growing Rhipbium japonicum in a soybean field in the People’s Republic of China. Appl Environ Microbiol 1985; 50:1171–1176
    [Google Scholar]
  23. Fisher H.M., Hennecke H. Direct response of Bradyrhipbium japonicum nif A-mediated nif gene regulation to cellular oxygen status. Mol & Gen Genet 1987; 209:621–626
    [Google Scholar]
  24. Fisher H.M., Bruderer T., Hennecke H. Essential and non-essential domains in the Bradyrhipbiumjaponicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res 1988; 16:2207–2224
    [Google Scholar]
  25. Friedman D.I. Integration host factor: a protein for all reasons. Cell 1988; 55:545–554
    [Google Scholar]
  26. Gilles-Gonzalez M.A., Ditta G., Helinski D.R. A haemoprotein with quinase activity encoded by the oxygen sensor of Rhipbium meliloti. Nature 1991; 350:170–172
    [Google Scholar]
  27. Gubler M. Fine-tuning of nif and fix gene expression by upstream activator sequences in Bradyrhipbium japonicum. Mol Microbiol 1989; 3:149–159
    [Google Scholar]
  28. Gubler M., Hennecke H. Regulation of the fix A gene and ftxBC operon in Bradyrhipbiumjaponicum. J Bacteriol 1988; 170:205–1214
    [Google Scholar]
  29. Holtel H., Abril M.-A., Marques S., Timmis K.N., Ramos J.L. Promoter-upstream activator sequences are required for expression of the xylS gene and upper-pathway operon on the Pseudomonas TOL plasmid. Mol Microbiol 1990; 4:1551–1556
    [Google Scholar]
  30. Hoover T.R., Santero E., Porter S., Kustu S. The Integration Host Factor (IHF) stimulates interaction of RNA polymerase with NifA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11–22
    [Google Scholar]
  31. Johnston A.W.B., Beringer J.E. Identification of the Rhipbium strains in pea root nodule using genetic markers. J Gen Microbiol 1975; 87:343–350
    [Google Scholar]
  32. Kahn D., Ditta G. Modular structure of FixJ : homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol Microbiol 1991; 5:987–997
    [Google Scholar]
  33. Kaminski P.A., Elmerich C. Involvement offixLJ in the regulation of nitrogen fixation in Aprhipbium caulinodans. Mol Microbiol 1991; 5:665–673
    [Google Scholar]
  34. Kaminski P.A., Mandon K., Arigoni F., Desnoues N., Elmerich C. Regulation of nitrogen fixation in Aprhipbium caulinodans : identification of a fixKASke gene, a positive regulator of nif A. Mol Microbiol 1991; 5:1983–1991
    [Google Scholar]
  35. Kustu S., Santero E., Keener J., Popham D., Weiss D. Expression of the σ54 (ntr A)-dependent genes is probably united by a common mechanism. Microbiol Rev 1989; 53:367–376
    [Google Scholar]
  36. Lamb J.M., Hombrecher G., Johnston A.W.B. Plasmid determined nodulation and nitrogen fixation abilities in Rhipbium phaseoli. Mol & Gen Genet 1982; 186:449–452
    [Google Scholar]
  37. Long S. Rhipbium-legume nodulation: life together in the underground. Cell 1989; 56:203–214
    [Google Scholar]
  38. De Lorenzo V., Herrero M., Metzke M., Timmis K.N. An upstream XylR- and IHF-induced nucleoprotein complex regulates the er54-dependent Pu promoter of TOL plasmid. EMBO J 1991; 10:1159–1167
    [Google Scholar]
  39. Martinez E., Romero D., Palacios R. Rhipbium genome. Crit Rev Plant Sci 1990; 9:59–87
    [Google Scholar]
  40. Martinez-Romero E., Segovia L., Mercante F.M., Franco A.A., Graham P., Pardo M.A. Rhipbium tropici, a novel species nodulating Phaseolus vulgaris L beans and Leucaena sp trees. Int J Syst Bacteriol 1991; 41:417–426
    [Google Scholar]
  41. Megfas M., Caviedes M.A., Andres M., Sousa C., Ruiz-Berraquero F., Palomares A.J. Localization of his genes on the Rhizobium trifolii RS800 linkage map. Mol & Gen Genet 1989; 211:369–372
    [Google Scholar]
  42. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Morett E., Buck M. NifA-dependent in vivo protection demonstrated that the upstream activator sequence of nif promoter is a protein binding site. Proc Natl Acad Sci USA 1988; 85:9401–9405
    [Google Scholar]
  44. Nooman B., Motherway M., & O' Gara F. Ammonia regulation of the Rhizobium meliloti nitrogenase structural and regulatory genes under free-living conditions: involvement of the fixL gene product. Mol & Gen Genet 1992; 234:423–428
    [Google Scholar]
  45. De Philip P., Batut J., Boistard P. Rhizobium meliloti FixL is an oxygen sensor and regulates R meliloti nif A and fixK genes differently in Escherichia coli. J Bacteriol 1990; 172:4255–4262
    [Google Scholar]
  46. Ratet P., Pawloski K., Schell J., De Bruijn F.J. The A Rhizobium caulinodans nitrogen fixation regulatory gene, nif A, is controlled by the cellular nitrogen and oxygen status. Mol Microbiol 1989; 3:825–838
    [Google Scholar]
  47. Ronson C.W., Nixon B.T., Albright L.M., Ausubel F.M. Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J Bacteriol 1987; 169:2424–2431
    [Google Scholar]
  48. Ruvkun G.B., Sundaresan V., Ausubel F.M. Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti and related bacteria. Cell 1982; 29:551–559
    [Google Scholar]
  49. Santero E., Keener J., Kustu S. In vitro activity of the nitrogen fixation regulatory protein NIFA. Proc Natl Acad Sci USA 1989; 88:7346–7350
    [Google Scholar]
  50. Szeto W.W., Zimmerman J.L., Sundaresan V., Ausubel F.M. A Rhizobium meliloti symbiotic regulatory gene. Cell 1984; 36:1035–1043
    [Google Scholar]
  51. Szeto W.W., Nixon B.T., Ronson C.W., Ausubel F.M. Identification and characterization of the Rhizobium meliloti ntrC gene: R meliloti has separate regulatory pathways for activation of nitrogen genes in free-living and symbiotic cells. J Bacteriol 1987; 169:1423–1432
    [Google Scholar]
  52. Thfiny B., Hennecke H. The 24/12 promoter comes from ages. FEMS Microbiol Rev 1989; 63:341–358
    [Google Scholar]
  53. Thttny B., Fischer H.-M., Anthamatten D., Bruderer T., Hennecke H. The symbiotic nitrogen fixation regulatory operon (fixRnifA) of Bradyrhizobiumjaponicum is expressed aerobically and is subject to a novel, HindIII-independent type of activation. Nucleic Acids Res 1987; 15:8479–8499
    [Google Scholar]
  54. Trinick M.J. Relationships amongst the fast-growing rhizobia of Eablab purpureus, Eeucaena leucocephala, Mimosa spp. Acacia farnesiana and Sesbania glandiflora and their affinities with other rhizobial groups. J Appl Bacteriol 1980; 49:39–53
    [Google Scholar]
  55. Virts E.L., Stanfield S.W., Helinski D.R., Ditta G. Common regulatory elements control symbiotic and microaerobic induction of nif A in Rhizobium meliloti. Proc Natl Acad Sci USA 1988; 85:3062–3065
    [Google Scholar]
  56. Waelkens F., Foglia A., Morel J.-B., Fourment J., Batut J., Boistard P. Molecular genetic analysis of the Rhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol Microbiol 1992; 6:1447–1456
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-3-443
Loading
/content/journal/micro/10.1099/00221287-140-3-443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error