1887

Abstract

Homochiral--cyclohexa-3,5-diene-1,2-diols are important synthons. We found a way to produce -configured homochiral diols using recombinant 62-1. Transformation of this mutant (Phe Trp Tyr) with plasmids carrying genes involved in chorismic and isochorismic acid metabolism leads to the production of either (+)--(2S,3S)-2,3-dihydroxycyclohexa-4,6-dienecarboxylic acid or (-)--(3R,4R)-3,4-dihydroxycyclohexa-1,5-dienecarboxylic acid, with a yield of 70 or 90 mg (l culture broth), respectively. The metabolic shift from one diene to the other is caused by a change in activity of isochorismate hydroxymutase and/or isochorismatase which in turn results from growth under iron deficiency or overexpression of genes and/or involved in chorismate metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-1005
1996-04-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-1005.html?itemId=/content/journal/micro/10.1099/00221287-142-4-1005&mimeType=html&fmt=ahah

References

  1. Beecham A.F., Mathieson A., McL., Johns S.R., Lamberton J.A., Sioumis A.A., Batterham T.J., Young I.G. The influence of allylic oxygen on the CD of skew dienes. Tetrahedron 1971; 27:3725–3738
    [Google Scholar]
  2. Bradford M. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254
    [Google Scholar]
  3. Brickman T.J., Ozenberger B.A., McIntosh M.A. Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol 1990; 212:669–682
    [Google Scholar]
  4. Brown S.M., Hudlicky T. The use of arene-rA-diols in synthesis. In Organic Synthesis Theory and Application 1993 Edited by Tomas Hudlicky. London: JAI Press; pp 113–117
    [Google Scholar]
  5. Bullock W.O., Fernandez J.M., Short J.M. A high efficiency plasmid transforming recA Escherichia coli strain with galactosidase selection. Biotechniques 1987; 5:376–378
    [Google Scholar]
  6. Carless H.A.J. The use of cyclohexa-3, 5-diene-l, 2-diols in enantiospecific synthesis. Tetrahedron Asymmetry 1992; 3:795–826
    [Google Scholar]
  7. Casabadan M.J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu. J Mol Biol 1976; 104:541–555
    [Google Scholar]
  8. Chiasson B.A., Berchtold G.A. Synthesis of trans-3, 4-dihydroxy-3, 4-dihydrobenzoic acid. J Am Cbem Soc 1974; 96:2898–2901
    [Google Scholar]
  9. De Marinis R.M., Filer C.N., Waraszkiewicz S.M., Berchtold G.A. Synthesis of /nz«r-2, 3-dihydroxy-2, 3-dihydrobenzoic acid and related substances from 4-carbo-/ir/-butoxyoxepin. Am Chem Soc 1974; 96:1193–1197
    [Google Scholar]
  10. Gibson D.T. Formation of (+)-«-2, 3-dihydroxy-l-methylcyclohexa-4, 6-diene from toluene by Pseudomonas putida. Biochemistry 1970; 9:1626–1629
    [Google Scholar]
  11. Gibson M.J., Gibson F. Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J 1964; 90:248–256
    [Google Scholar]
  12. Jerina D.M., Ziffer H., Dali J.W. The role of the arene oxide-oxepin system in the metabolsim of aromatic substrates. IV. Stereochemical considerations of dihydrodiol formation and dehydrogenation. J Am Chem Soc 1970; 92:1056–1061
    [Google Scholar]
  13. Jones D.S., C. & Schofield J.P. A rapid method for isolating high quality plasmid DNA suitable for DNA sequencing. Nucleic Acids Res 1990; 18:7463–1
    [Google Scholar]
  14. Kaiser A., Leistner E. Role of the entC gene in enterobactin and menaquinone biosynthesis in Escherichia coli. Arch Biochem Biophys 1990; 276:331–335
    [Google Scholar]
  15. Klenow H., Henningsen I. Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli by limited proteolysis. Proc Natl Acad Sei USA 1979; 65:168–175
    [Google Scholar]
  16. Kohlbrecher D., Eisermann R., Hengstenberg W. Rapid isolation and efficient purification of bacterial genomic DNA for PCR amplification (Perkin Elmer Cetus). Amplifications 1990; 4:30–1
    [Google Scholar]
  17. Lauritzen C., Tüchsen E., Hansin P.E., Skoovgaard D. BPTI and N-terminal extended analogues generated by factor Xa and cathepsin C trimming of a fusion protein expressed in Escherichia coli. Protein Expr 1991; Purif2:372–378
    [Google Scholar]
  18. Müller R., Wagener A., Schmidt K., Leistner E. Microbial production of specifically [ring-13C]-labelled 4-hydroxybenzoic acid. Appl Microbiol Biotechnol 1995; 40:985–988
    [Google Scholar]
  19. Nishimura A., Morita M., Nishimura Y., Sugino Y. A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res 1991; 18:381–386
    [Google Scholar]
  20. Ozenberger B.A., Brickman T.J., McIntosh M.A. Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol 1989; 171:775–783
    [Google Scholar]
  21. Popp J.L. Sequence and overexpression of the menD gene from Escherichia coli. J Bacteriol 1989; 171:4349–4354
    [Google Scholar]
  22. Rusche J., Flanders P.H. Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase. Nucleic Acids Res 1985; 13:1997–2008
    [Google Scholar]
  23. Rusnak F., Lui J., Quinn N., Berchtold G.A., Walsh C.T. Subcloning of the enterobactin biosynthetic gene entB: expression, purification, characterization, and substrate specifity of isochorismate. Biochemistry 1990; 29:1425–1435
    [Google Scholar]
  24. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schmidt K., Leistner E. Microbial production of (+)-/rawr-isochorismic acid. Biotechnol Bioeng 1995; 45:285–291
    [Google Scholar]
  26. Schrodt Nahlik M., Brickman T.J., Ozenberger B.A., McIntosh M.A. Nucleotide sequence and transcriptional organization of the Escherichia coli enterobactin biosynthesis cistrons entB and entA. J Bacteriol 1989; 171:784–790
    [Google Scholar]
  27. Spratt B.G., Hedge P.J., te Heesen S., Edelman A., Broome-Smith J.K. Kanamycin resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 1986; 41:337–342
    [Google Scholar]
  28. Vogel H.J., Bonner D.M. Acetylornithase of Escherichia coli: partial purification and some properties. J Biol Chem 1956; 218:97
    [Google Scholar]
  29. Young I.G., Batterham T.J., Gibson F. The isolation, identification and properties of isochorismic acid An intermediate in the biosynthesis of 2, 3-dihydroxybenzoic acid. Biochim Biophys Acta 1969a; 177:389–400
    [Google Scholar]
  30. Young I.G., Gibson F., MacDonald C.G. Enzymic and nonenzymic transformations of chorismic acid and related cyclo-hexadienes. Biochim Biophys Acta 1969b; 192:62–72
    [Google Scholar]
  31. Young I.G., Jackman L.M., Gibson F. The isolation, identification and properties of 2, 3-dihydro-2, 3-dihydroxybenzoic acid An intermediate in the biosynthesis of 2, 3-dihydroxybenzoic acid. Biochim Biophys Acta 1969c; 177:381–388
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-1005
Loading
/content/journal/micro/10.1099/00221287-142-4-1005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error