1887

Abstract

Summary: A mycobacteriophage D29 DNA fragment cloned in pRM64, a shuttle plasmid that transforms , was sequenced. The determined sequence was 2592 nucleotides long and had a mean G+C content of 63.7 mol%, similar to that of mycobacterial DNA. Four ORFs were identified: one with strong homology to dCMP deaminase genes; one homologous to mycobacteriophage L5 gene 36, whose function is unknown; one encoding a possible excisase; and one encoding an integrase. The intergenic region between the putative excisase gene and the integrase gene had a lower than average G+C content and showed the presence of the same core sequence as mycobacteriophage L5. Transformation experiments using subclones of pRM64 indicated that the integrase gene and all the intergenic region were essential for stable transformation. A subclone containing the integrase gene and the core sequence was able to transform but recombinants were highly unstable. Southern analysis of total DNA from cells transformed with pRM64 and its derivatives showed that all the plasmids were integrated at one specific site of the bacterial chromosome. A recombinant exhibiting a high level of resistance to the selective drug kanamycin had two plasmids integrated at different sites. These results demonstrated that the D29 sequences contained in pRM64 were integrative, indicating that the generally held view of D29 as a virulent phage must be reviewed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2701
1997-08-01
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2701.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2701&mimeType=html&fmt=ahah

References

  1. Barletta R. G., Kim D. D., Snapper S. B., Bloom B. R., Jacobs W. R. Jr 1992; Identification of expression signals of the mycobacteriophages Bxb1, L1 and TM4 using the Escherichia–Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. J Gen Microbiol 138:23–30
    [Google Scholar]
  2. Bowman B. U. 1958; Quantitative studies on some mycobacterial phage-host systems. J Bacteriol 76:52–62
    [Google Scholar]
  3. David M., Lubinsky-Mink S., Ben-Zvi A., Ulitzur S., Kuhn J., Suissa M. 1992; A stable Escherichia coli-Mycobacterium smegmatis plasmid shuttle vector containing the mycobacteriophage D29 origin. Plasmid 28:267–271
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  5. Donnely-Wu M. Κ., Jacobs W. R. Jr, Hatfull G. F. 1993; Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417
    [Google Scholar]
  6. Froman S., Will D. W., Bogen E. 1954; Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and activity. Am J Public Health 44:1326–1333
    [Google Scholar]
  7. Hall D. H., Tessman I. 1966; T4 mutants unable to induce deoxycytidylate deaminase activity. Virology 29:339–345
    [Google Scholar]
  8. Hatfull G. F., Sarkis G. J. 1993; DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405
    [Google Scholar]
  9. Houssaini-lraqui M., Lazraq R., Clavel-Sérès S., Rastogi N., David H. L. 1992; Cloning and expression of Mycobacterium aurum carotenogenesis genes in Mycobacterium smegmatis. . FEMS Microbiol Lett 90:239–244
    [Google Scholar]
  10. Kempsell K. E., Ji Y. E., Estrada I. C., Colston M. J., Cox R. A. 1992; The nucleotide sequence of the promoter, 16S rRNA and spacer region of the ribosomal RNA operon of Mycobacterium tuberculosis and comparison with Mycobacterium leprae precursor rRNA. J Gen Microbiol 138:1717–1727
    [Google Scholar]
  11. Labidi A., David H. L., Roulland-Dussoix D. 1985; Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var. fortuitum plasmid pAL5000. Ann Inst Pasteur Microbiol 136B:209–215
    [Google Scholar]
  12. Lazraq R., Clavel-Sérès S., David H. L., Roulland-Dussoix D. 1990; Conjugative transfer of a shuttle plasmid for Escherichia coli to Mycobacterium smegmatis. . FEMS Microbiol Lett 69:135–138
    [Google Scholar]
  13. Lazraq R., Houssaini-lraqui M., Clavel-Sérès S., David H. L. 1991; Cloning and expression of the origin of replication of mycobacteriophage D29 in Mycobacterium smegmatis. . FEMS Microbiol Lett 80:117–120
    [Google Scholar]
  14. Lee M. H., Hatfull G. F. 1993; Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J Bacteriol 175:6836–6841
    [Google Scholar]
  15. Lee M. H., Pascopella L., Jacobs W. R. Jr, Hatfull G. F. 1991; Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci USA 88:3111–3115
    [Google Scholar]
  16. Maley G. F., Guarino D. U., Maley F. 1983; Complete amino acid sequence of an allosteric enzyme, T2 bacteriophage deoxycytidylate deaminase. J Biol Chem 258:8290–8297
    [Google Scholar]
  17. Mizuguchi Y. 1984; Mycobacteriophages. . In The Mycobacteria: a Source Book pp. 641–662 . Edited by Kubica G. P., Wayne L. G. New York: Marcel Dekker;
    [Google Scholar]
  18. Peña C. E. A., Stoner J. E., Hatfull G. F. 1996; Positions of strand exchange in mycobacteriophage L5 integration and characterization of the attB site. J Bacteriol 178:5533–5536
    [Google Scholar]
  19. Peña C. E. A., Lee M. H., Pedulla M. L., Hatfull G. F. 1997; Characterization of the mycobacteriophage L5 attachment site, attP. . J Mol Biol 266:76–92
    [Google Scholar]
  20. Redmond W. B., Ward D. M. 1966; Media and methods for phage-typing mycobacteria. Bull WHO 35:563–568
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  23. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R. Jr 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991
    [Google Scholar]
  24. Snapper S., Melton R., Keiser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. . Mol Microbiol 4:1911–1919
    [Google Scholar]
  25. Snider D. E. Jr, Raviglione M., Kochi A. 1994; Global burden of tuberculosis. . In Tuberculosis: Pathogenesis, Protection, and Control pp. 3–11 . Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Stover C., Κ., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F., Snapper S. B., Barletta R. G., Jacobs W. R. Jr, Bloom B. R. 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  27. White A., Foster F., Lyon L. 1962; Alteration in colony morphology of mycobacteria associated with lysogeny. J Bacteriol 84:815–818
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2701
Loading
/content/journal/micro/10.1099/00221287-143-8-2701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error