1887

Abstract

In , Hsp18, a protein belonging to the family of small heat-shock proteins, can be detected only at high temperature. Disruption of , located upstream and in the opposite orientation to , resulted in an elevated level of mRNA at low temperature. Genetic and biochemical experiments indicated that the product of , now called RheA (epressor of ighteen), directly represses . In , an transcriptional fusion was repressed in a strain expressing RheA. DNA-binding experiments with crude extracts of overproducing RheA indicated that RheA interacts specifically with the promoter. Transcription analysis of in the wild-type and in mutant strains suggested that RheA represses transcription not only of but also of itself.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2385
1999-09-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452385a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2385&mimeType=html&fmt=ahah

References

  1. Avedissian M., Gomes S. L. 1996; Expression of the groESL operon is cell-cycle controlled in Caulobacter crescentus. Mol Microbiol 19:79–89 [CrossRef]
    [Google Scholar]
  2. Babst M., Hennecke H., Fischer H. M. 1996; Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839 [CrossRef]
    [Google Scholar]
  3. Barbosa M. D. F. S., Yomano L. P., Ingram L. O. 1994; Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Gene 148:51–57 [CrossRef]
    [Google Scholar]
  4. Bucca G., Ferina G., Puglia A.-M., Smith C. P. 1995; The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17:663–674 [CrossRef]
    [Google Scholar]
  5. Bucca G., Hindle Z., Smith C. P. 1997; Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179:5999–6004
    [Google Scholar]
  6. Bukau B. 1993; Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9:671–680 [CrossRef]
    [Google Scholar]
  7. Chater K. F., Wilde L. C. 1980; Streptomyces albus G mutants defective in the SalGI restriction–modification system. J Gen Microbiol 116:323–334
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  9. Derré I., Rapoport G., Devine K, Rose M., Msadek T. 1999a; ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32:581–593 [CrossRef]
    [Google Scholar]
  10. Derré I, Rapoport G., Msadek T. 1999b; CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131 [CrossRef]
    [Google Scholar]
  11. Georgopoulos C., Welch W. J. 1993; Role of the major heat shock proteins as molecular chaperones. Annu Rev Mol Biol 9:601–634 [CrossRef]
    [Google Scholar]
  12. Gibson T. J. 1958; Studies on the Epstein–Barr virus genome. PhD thesis Cambridge University;
    [Google Scholar]
  13. Grandvalet C., Servant P., Mazodier P. 1997; Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol 23:77–84 [CrossRef]
    [Google Scholar]
  14. Grandvalet C., Rapoport G., Mazodier P. 1998; hrcA encoding the repressor of the groEL genes in Streptomyces albus G is associated with a second dnaJ gene. J Bacteriol 180:5129–5134
    [Google Scholar]
  15. Grandvalet C., de Crécy-Lagard V., Mazodier P. 1999; The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol 31:521–532 [CrossRef]
    [Google Scholar]
  16. Hecker M., Schumann W., Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428 [CrossRef]
    [Google Scholar]
  17. Hirata H., Fukazawa T., Negoro S., Okada H. 1986; Structure of a β-galactosidase gene of Bacillus stearothermophilus. J Bacteriol 166:722–727
    [Google Scholar]
  18. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  19. Jakob U., Gaestel M., Engel K., Buchner J. 1993; Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520
    [Google Scholar]
  20. Mantis N. J., Winans S. C. 1992; Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a σ32-like sigma factor. J Bacteriol 174:991–997
    [Google Scholar]
  21. Martinez E., Bartolomé B., de la Cruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162 [CrossRef]
    [Google Scholar]
  22. Michel G. P. F. 1993; Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis. J Bacteriol 175:3228–3231
    [Google Scholar]
  23. Miller J. H. 1958 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Mogk A., Homuth G., Scholz C., Kim L., Schmid F. X., Schumann W. 1997; The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590 [CrossRef]
    [Google Scholar]
  25. Msadek T., Dartois V., Kunst F., Herbaud M. L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914 [CrossRef]
    [Google Scholar]
  26. Münchbach M, Nocker A., Naberhaus F. 1999; Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90
    [Google Scholar]
  27. Naberhaus F., Käser R, Nocker A., Hennecke H. 1998; A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323 [CrossRef]
    [Google Scholar]
  28. Puglia A.-M, Vohradsky J., Thompson C. J. 1995; Developmental control of the heat-shock stress regulon in Streptomyces coelicolor. Mol Microbiol 17:737–746 [CrossRef]
    [Google Scholar]
  29. Reisenauer A., Mohr C. D., Shapiro L. 1996; Regulation of a heat shock σ32 homolog in Caulobacter crescentus. J Bacteriol 178:1919–1927
    [Google Scholar]
  30. Roberts R. C., Toochinda C., Avedissian M., Baldini R. L., Gomes S. L., Shapiro L. 1996; Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178:1829–1841
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  33. Schulz A., Schumann W. 1996; hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093
    [Google Scholar]
  34. Segal G., Ron E. Z. 1993; Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure. J Bacteriol 175:3083–3088
    [Google Scholar]
  35. Servant P., Mazodier P. 1995; Characterization of Streptomyces albus 18-kilodalton heat shock responsive protein. J Bacteriol 177:2998–3003
    [Google Scholar]
  36. Servant P., Mazodier P. 1996; Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J Bacteriol 178:7031–7036
    [Google Scholar]
  37. Servant P., Thompson C., Mazodier P. 1993; Use of new Escherichia coli/Streptomyces conjugative vectors to probe the functions of the two groEL-like genes of Streptomyces albus G by gene disruption. Gene 134:25–32 [CrossRef]
    [Google Scholar]
  38. Servant P., Thompson C., Mazodier P. 1994; Post-transcriptional regulation of the groEL1 gene of Streptomyces albus. Mol Microbiol 12:423–432 [CrossRef]
    [Google Scholar]
  39. Straus D., Walter W., Gross C. A. 1990; DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev 4:2202–2209 [CrossRef]
    [Google Scholar]
  40. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  41. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  42. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  43. Yuan G., Wong S.-L. 1995; Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177:6462–6468
    [Google Scholar]
  44. Yura T., Nagai H., Mori H. 1993; Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350 [CrossRef]
    [Google Scholar]
  45. Zuber U., Schumann W. 1994; CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2385
Loading
/content/journal/micro/10.1099/00221287-145-9-2385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error