1887

Abstract

Cyanobacteria modulate intracellular levels of cAMP and cGMP in response to environmental conditions (light, nutrients and pH). In an attempt to identify components of the cAMP and cGMP signalling pathways in PCC 6803, the authors screened its complete genome sequence by using bioinformatic tools and data from sequence–function studies performed on both eukaryotic and prokaryotic cAMP/cGMP-dependent proteins. Sll1624 and Slr2100 were tentatively assigned as being two putative cyclic nucleotide phosphodiesterases. Five proteins were identified as having all the determinants required to be cyclic nucleotide receptors, two of them being probably more specific for cGMP (an element of two-component regulatory systems – Slr2104 – and a putative cyclic-nucleotide-gated cation channel – Slr1575), the three others being probably more specific for cAMP: (i) a protein of unidentified function (Slr0842); (ii) a putative cyclic-nucleotide-modulated permease (Slr0593), previously annotated as a kinase A regulatory subunit; and (iii) a putative transcription factor (CRP- =Sll1371), which possesses cAMP- and DNA-binding determinants homologous to those of the cAMP receptor protein of (CRP-). This homology, together with the presence in of CRP--like binding sites upstream of , , , and several genes encoding enzymes involved in transport and metabolism, strongly suggests that CRP- is a global regulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3183
2000-12-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463183a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3183&mimeType=html&fmt=ahah

References

  1. Altenhofen W., Ludwig J., Eismann E., Kraus W., Bonigk W., Kaupp U. B. 1991; Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci USA 88:9868–9872 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Koonin E. V. 1998; Iterated profile searches with psi-blast: a tool for discovery in protein databases. Trends Biochem Sci 23:444–447 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blastand psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Appleby J. L., Parkinson J. S., Bourret R. B. 1996; Signal transduction via the multi-step phosphorelay: not necessarily a road less travelled. Cell 86:845–848 [CrossRef]
    [Google Scholar]
  5. Aravind L., Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472 [CrossRef]
    [Google Scholar]
  6. Aravind L., Ponting C. P. 1997; The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459 [CrossRef]
    [Google Scholar]
  7. Beavo J. A. 1995; Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75:725–748
    [Google Scholar]
  8. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  9. Berg O. G., von Hippel P. H. 1988; Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723 [CrossRef]
    [Google Scholar]
  10. Berman H. M. 1999; The past and future of structure databases. Curr Opin Biotechnol 10:76–80 [CrossRef]
    [Google Scholar]
  11. Botsford J. L., Harman J. G. 1992; Cyclic AMP in prokaryotes. Microbiol Rev 56:100–122
    [Google Scholar]
  12. Bradley J., Li J., Davidson N., Lester H. A., Zinn K. 1994; Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc Natl Acad Sci USA 91:8890–8894 [CrossRef]
    [Google Scholar]
  13. Daniel P. B., Walker W. H., Habener J. F. 1998; Cyclic AMP signalling and gene regulation. Annu Rev Nutr 18:353–383 [CrossRef]
    [Google Scholar]
  14. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. 1998; The structure of the potassium channel: molecular basis of K+conduction and selectivity. Science 280:69–77 [CrossRef]
    [Google Scholar]
  15. Dzeja C., Hagen V., Kaupp U. B., Frings S. 1999; Ca2+permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144 [CrossRef]
    [Google Scholar]
  16. Ebright R. H., Le Grice S. F., Miller J. P., Krakow J. S. 1985; Analogues of cyclic AMP that elicit the biochemically defined conformational change in catabolite gene activator protein (CAP) but do not stimulate binding to DNA. J Mol Biol 182:91–107 [CrossRef]
    [Google Scholar]
  17. Finn J. T., Grunwald M. E., Yau K. W. 1996; Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol 58:395–426 [CrossRef]
    [Google Scholar]
  18. Glaser P., Kunst F., Arnaud M.14 other authors 1993; Bacillussubtilisgenome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol 10:371–384 [CrossRef]
    [Google Scholar]
  19. Gralla J. D., Collado-Vides J. 1996; Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 1232–1245Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Hanamura A., Aiba H. 1991; Molecular mechanism of negative autoregulation of Escherichia colicrpgene. Nucleic Acids Res 19:4413–4419 [CrossRef]
    [Google Scholar]
  21. Heginbotham L., Abramson T., MacKinnon R. 1992; A functional connection between the pores of distantly related ion channels as revealed by mutant K +channels. Science 258:1152–1155 [CrossRef]
    [Google Scholar]
  22. Herdman M., Elmorjani K. 1988; Cyclic nucleotides. Methods Enzymol 167:584–591
    [Google Scholar]
  23. Heyduk E., Heyduk T., Lee J. C. 1992; Intersubunit communications in Escherichia colicyclic AMP receptor protein: studies of the ligand binding domain. Biochemistry 31:3682–3688 [CrossRef]
    [Google Scholar]
  24. Kaneko T., Sato S., Kotani H.21 other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystissp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein- coding regions. DNA Res 3:109–136 [CrossRef]
    [Google Scholar]
  25. Kasahara M., Ohmori M. 1999; Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and a subsequent phosphotransfer reaction. J Biol Chem 274:15167–15172 [CrossRef]
    [Google Scholar]
  26. Katayama M., Ohmori M. 1997; Isolation and characterization of multiple adenylate cyclase genes from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179:3588–3593
    [Google Scholar]
  27. Kerr I. D., Sansom M. S. 1995; Cation selectivity in ion channels. Nature 373:112
    [Google Scholar]
  28. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795 [CrossRef]
    [Google Scholar]
  29. Kotani H., Tabata S. 1998; Lessons from sequencing of the unicellular cyanobacterium Synechocystissp. PCC 6803. Annu Rev Plant Physiol Plant Mol Biol 49:151–171 [CrossRef]
    [Google Scholar]
  30. Kumano M., Tomioka N., Sugiura M. 1983; The complete nucleotide sequence of a 23S rRNA gene from a blue-green alga, Anacystis nidulans. Gene 24:219–225 [CrossRef]
    [Google Scholar]
  31. Lee E. J., Glasgow J., Leu S. F., Belduz A. O., Harman J. G. 1994; Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: targeting positions 83, 127 and 128 of the cyclic nucleotide binding pocket. Nucleic Acids Res 22:2894–2901 [CrossRef]
    [Google Scholar]
  32. Lupas A. 1996; Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382 [CrossRef]
    [Google Scholar]
  33. McAllister-Lucas L. M., Haik T. L., Colbran J. L., Sonnenburg W. K., Seger D., Turko I. V., Beavo J. A., Francis S. H., Corbin J. D. 1995; An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. J Biol Chem 270:30671–30679 [CrossRef]
    [Google Scholar]
  34. Macfadyen L. P., Ma C., Redfield R. J. 1998; A 3′,5′- cyclic AMP (cAMP) phosphodiesterase modulates cAMP levels and optimizes competence in Haemophilus influenzaeRd. J Bacteriol 180:4401–4405
    [Google Scholar]
  35. Mizuno T., Kaneko T., Tabata S. 1996; Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystissp. strain PCC 6803. DNA Res 3:407–414 [CrossRef]
    [Google Scholar]
  36. Moore J., Kantorow M., Vanderzwaag D., McKenney K. 1992; Escherichia colicyclic AMP receptor protein mutants provide evidence for ligand contacts important in activation. J Bacteriol 174:8030–8035
    [Google Scholar]
  37. Moore J. L., Gorshkova I. I., Brown J. W., McKenney K. H., Schwarz F. P. 1996; Effect of cAMP binding site mutations on the interaction of cAMP receptor protein with cyclic nucleoside monophosphate ligands and DNA. J Biol Chem 271:21273–21278 [CrossRef]
    [Google Scholar]
  38. Nakamura Y., Kaneko T., Hirosawa M., Miyajima N., Tabata S. 1998; CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC 6803. Nucleic Acids Res 26:63–67 [CrossRef]
    [Google Scholar]
  39. Ochoa de Alda J. A. G., Ajlani G., Houmard J. 2000; The SynechocystisPCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol 182:3839–3842 [CrossRef]
    [Google Scholar]
  40. Ohmori M. 1989; cAMP in Anabaena cylindrica : rapid changes in cellular levels in response to changes in extracellular environments. Plant Cell Physiol 30:911–914
    [Google Scholar]
  41. Olivera E. R., Minambres B., Garcia B., Muniz C., Moreno M. A., Ferrandez A., Diaz E., Garcia J. L., Luengo J. M. 1998; Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonasputida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424 [CrossRef]
    [Google Scholar]
  42. Pallen M. J. 1999; Microbial genomes. Mol Microbiol 32:907–912 [CrossRef]
    [Google Scholar]
  43. Pellequer J. L., Wager-Smith K. A., Kay S. A., Getzoff E. D. 1998; Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc Natl Acad Sci USA 95:5884–5890 [CrossRef]
    [Google Scholar]
  44. Rost B., Sander C. 1994; Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72 [CrossRef]
    [Google Scholar]
  45. Rost B., Fariselli P., Casadio R. 1996; Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 5:1704–1718 [CrossRef]
    [Google Scholar]
  46. Sakamoto T., Murata N., Ohmori M. 1991; The concentration of cyclic AMP and adenylate cyclase activity in cyanobacteria. Plant Cell Physiol 32:581–584
    [Google Scholar]
  47. Scharf M., Schneider R., Casari G., Bork P., Valencia A., Ouzounis C., Sander C. 1994; GeneQuiz: a workbench for sequence analysis. ISMB 2:348–353
    [Google Scholar]
  48. Schultz S. C., Shields G. C., Steitz T. A. 1991; Crystal structure of a CAP–DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007 [CrossRef]
    [Google Scholar]
  49. Schultz J., Milpetz F., Bork P., Ponting C. P. 1998; smart, a simple modular architecture research tool: identification of signalling domains. Proc Natl Acad Sci USA 95:5857–5864 [CrossRef]
    [Google Scholar]
  50. Shabb J. B., Ng L., Corbin J. D. 1990; One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J Biol Chem 265:16031–16034
    [Google Scholar]
  51. Tal R., Wong H. C., Calhoon R.11 other authors 1998; Three cdgoperons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425
    [Google Scholar]
  52. Taylor S. S., Buechler J. A., Yonemoto W. 1990; cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005 [CrossRef]
    [Google Scholar]
  53. Terauchi K., Ohmori M. 1998; An adenylate cyclase, CyaD, mediates the signal of blue light in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 39:s153 [CrossRef]
    [Google Scholar]
  54. Terauchi K., Ohmori M. 1999; An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 40:248–251 [CrossRef]
    [Google Scholar]
  55. Thomasson P. A., Traynor D., Cavet G., Chang W. T., Harwood A. J., Kay R. R. 1998; An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium. EMBO J 17:2838–2845 [CrossRef]
    [Google Scholar]
  56. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  57. Tibbs G. R., Liu D. T., Leypold B. G., Siegelbaum S. A. 1998; A state- independent interaction between ligand and a conserved arginine residue in cyclic nucleotide-gated channels reveals a functional polarity of the cyclic nucleotide binding site. J Biol Chem 273:4497–4505 [CrossRef]
    [Google Scholar]
  58. Turko I. V., Haik T. L., McAllister-Lucas L. M., Burns F., Francis S. H., Corbin J. D. 1996; Identification of key amino acids in a conserved cGMP-binding site of cGMP-binding phosphodiesterases. A putative NKXnD motif for cGMP binding. J Biol Chem 271:22240–22244 [CrossRef]
    [Google Scholar]
  59. Turko I. V., Francis S. H., Corbin J. D. 1998; Potential roles of conserved amino acids in the catalytic domain of the cGMP-binding cGMP- specific phosphodiesterase. J Biol Chem 273:6460–6466 [CrossRef]
    [Google Scholar]
  60. Tusnady G. E., Simon I. 1998; Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506 [CrossRef]
    [Google Scholar]
  61. Varnum M. D., Black K. D., Zagotta W. N. 1995; Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15:619–625 [CrossRef]
    [Google Scholar]
  62. Vogler A. P., Lengeler J. W. 1987; Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coliK-12. J Bacteriol 169:593–599
    [Google Scholar]
  63. Weber I. T., Steitz T. A. 1987; Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2·5 Åresolution. J Mol Biol 198:311–326 [CrossRef]
    [Google Scholar]
  64. Woodford T. A., Correll L. A., McKnight G. S., Corbin J. D. 1989; Expression and characterization of mutant forms of the type I regulatory subunit of cAMP-dependent protein kinase. The effect of defective cAMP binding on holoenzyme activation. J Biol Chem 264:13321–13328
    [Google Scholar]
  65. Yoshimura H., Hisabori T., Yanagisawa S., Ohmori M. 2000; Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 275:6241–6245 [CrossRef]
    [Google Scholar]
  66. Zagotta W. N., Siegelbaum S. A. 1996; Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263 [CrossRef]
    [Google Scholar]
  67. Zhulin I. B., Taylor B. L. 1998; Correlation of PAS domains with electron transport-associated proteins in completely sequenced microbial genomes. Mol Microbiol 29:1522–1523
    [Google Scholar]
  68. Zhulin I. B., Taylor B. L., Dixon R. 1997; PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331–333 [CrossRef]
    [Google Scholar]
  69. Zong X., Zucker H., Hofmann F., Biel M. 1998; Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J 17:353–362 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3183
Loading
/content/journal/micro/10.1099/00221287-146-12-3183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error