1887

Abstract

The absorption spectrum of factor F changes depending on the pH and the redox state of the cytoplasm. Specific wavelengths were used to calibrate absorption changes to allow the measurement of changes in the cytoplasmic pH in . Upon a hydrogen pulse, a rapid efflux of protons was observed. Under these energized conditions, the ΔpH amounts to 02–04 pH units at pH 66, and 06–08 pH units at pH 60. It decays within 10–20 s. In parallel, a sodium gradient is formed which has a slightly longer lifetime. Both ΔpH and ΔΨ contribute to the proton-motive force present during methanogenesis. The energy-conversion rate, as indicated by the decay of the energized state of the cell, is fastest under growth conditions, i.e. at pH 69 and at a temperature of 58 °C.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3245
2000-12-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463245a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3245&mimeType=html&fmt=ahah

References

  1. Aono R., Ito M., Horikoshi K. 1997; Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology 143:2531–2536 [CrossRef]
    [Google Scholar]
  2. Bachofen R., Butsch B. 1986; Measurement of ΔpH and electron transport activities in Methanobacterium thermoautotrophicum. Syst Appl Microbiol 7:349–353 [CrossRef]
    [Google Scholar]
  3. Breeuwer P., Drocourt J. L., Rombouts F. M., Abee T. 1996; A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succimidyl ester. Appl Environ Microbiol 62:178–183
    [Google Scholar]
  4. Butsch B., Bachofen R. 1984; The membrane potential in whole cells of Methanobacterium thermoautotrophicum. . Arch Microbiol 138:293–298 [CrossRef]
    [Google Scholar]
  5. Cheeseman P., Toms-Wood A., Wolfe R. S. 1972; Isolation and properties of a fluorescent compound, factor420, from Methanobacterium strain M.o.H. J Bacteriol 112:527–531
    [Google Scholar]
  6. Deppenmeier U., Müller V., Gottschalk G. 1996; Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163 [CrossRef]
    [Google Scholar]
  7. Dybas M., Konisky J. 1992; Energy transduction in the methanogen Methanococcus voltae is based on a sodium current. . J Bacteriol 174:5575–5583
    [Google Scholar]
  8. Eirich L. D., Vogels G. D., Wolfe R. S. 1978; Proposed structure for Coenzyme F420 from Methanobacterium. . Biochemistry 17:4583–4593 [CrossRef]
    [Google Scholar]
  9. Haines T. H. 1983; Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc Natl Acad Sci USA 80:160–164 [CrossRef]
    [Google Scholar]
  10. Hausinger R. P., Orme-Johnson W. H., Walsh C. 1985; Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor420. . Biochemistry 24:1629–1633 [CrossRef]
    [Google Scholar]
  11. Jud G., Schneider K., Bachofen R. 1997; The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol 19:246–251 [CrossRef]
    [Google Scholar]
  12. Kleyman T. R., Cragoe E. J. 1988; Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21 [CrossRef]
    [Google Scholar]
  13. Kotyk A., Slavik J. 1989 Intracellular pH and Its Measurement Boca Raton, FL: CRC Press;
    [Google Scholar]
  14. Kramer J. K. G., Sauer F. D., Bundle D. R. 1988; The presence of tightly bound Na+ or K+ in glycolipids of Methanobacterium thermoautotrophicum. Biochim Biophys Acta 961:285–292 [CrossRef]
    [Google Scholar]
  15. Müller V., Blaut M., Gottschalk G. 1987; Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur J Biochem 162:461–466 [CrossRef]
    [Google Scholar]
  16. Muth E. 1988; Localization of the F420-reducing hydrogenase in Methanococcus voltae cells by immuno-gold technique. Arch Microbiol 150:205–207 [CrossRef]
    [Google Scholar]
  17. Padan E., Zilberstein D., Schuldiner S. 1981; pH homeostasis in bacteria. Biochim Biophys Acta 650:151–166 [CrossRef]
    [Google Scholar]
  18. Reuter B. W., Egeler T., Schneckenburger H., Schoberth S. M. 1986; In vivo measurement of F420 fluorescence in cultures of Methanobacterium thermoautotrophicum. J Biotechnol 4:325–332 [CrossRef]
    [Google Scholar]
  19. Schäfer G., Engelhard M., Müller V. 1999; Bioenergetics of the Archaea. Microbiol Mol Biol Revs 63:570–620
    [Google Scholar]
  20. Schönheit P., Beimborn D. B. 1985; ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton gradient across the cytoplasmic membrane. . Eur J Biochem 148:545–550 [CrossRef]
    [Google Scholar]
  21. Schönheit P., Moll J., Thauer R. K. 1979; Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107 [CrossRef]
    [Google Scholar]
  22. Schönheit P., Keweloh H., Thauer R. K. 1981; Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349 [CrossRef]
    [Google Scholar]
  23. Siegumfeldt H., Rechinger K. B., Jakobsen M. 1999; Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures. Microbiology 145:1703–1709 [CrossRef]
    [Google Scholar]
  24. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. 1979; Intracellular pH measurements in Ehrlich ascites tumour cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218 [CrossRef]
    [Google Scholar]
  25. Thomas J. A., Kolbeck P. C., Langworthy T. A. 1982; Spectrophotometric determination of cytoplasmic and mitochondrial pH transitions using trapped pH indicators. In Intracellular pH, Its Measurement, Regulation, and Utilization in Cellular Function pp. 105–123Edited by Nuccitelli R., Deamer D. New York: A. R. Liss;
    [Google Scholar]
  26. Yassine M., Salmon J. M., Vigo J., Viallet P. 1997; C-SNARF-1 as a pHi fluoroprobe: discrepancies between conventional and intracellular data do not result from protein interactions. J Photochem Photobiol B 37:18–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3245
Loading
/content/journal/micro/10.1099/00221287-146-12-3245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error