1887

Abstract

The gene for a new bacterial aquaporin, AqpX, was cloned from the pathogenic Gram-negative bacterium . The gene was mapped on the large chromosome of . It is flanked by one upstream and two downstream copies of the repeated sequence Bru-RS. Prediction from the nucleotide sequence indicated that the protein is a member of the MIP family, which comprises channels for water and/or solute transport. Expression in oocytes and cryoelectron microscopy of cells transformed with the gene confirmed that the protein is an efficient water channel. Glycerol uptake experiments in also showed that the protein is not able to transport glycerol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3251
2000-12-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463251a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3251&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Calamita G., Bishai W. R., Preston G. M., Guggino W. B., Agre P. 1995; Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066 [CrossRef]
    [Google Scholar]
  3. Calamita G., Kempf B., Rudd K. E., Bonhivers M., Kneip S., Bishai W. R., Bremer E., Agre P. 1997; The aquaporin-Z water channel gene of Escherichia coli: structure, organization and phylogeny. Biol Cell 89:321–329 [CrossRef]
    [Google Scholar]
  4. Calamita G., Kempf B., Bonhivers M., Bishai W. R., Bremer E., Agre P. 1998; Regulation of the Escherichia coli water channel gene aqpZ. Proc Natl Acad Sci USA 95:3627–3631 [CrossRef]
    [Google Scholar]
  5. Delamarche C., Thomas D., Rolland J. P., Froger A., Gouranton J., Svelto M., Agre P., Calamita G. 1999; Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J Bacteriol 181:4193–4197
    [Google Scholar]
  6. Denker B. M., Smith B. L., Kuhajda F. P., Agre P. 1988; Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642
    [Google Scholar]
  7. Froger A., Tallur B., Thomas D., Delamarche C. 1998; Prediction of functional residues in water channels and related proteins. Protein Sci 7:1458–1468 [CrossRef]
    [Google Scholar]
  8. Halling S. M., Bricker B. J. 1994; Characterization and occurrence of two repeated palindromic DNA elements of Brucella spp.: Bru-RS1 and Bru-RS2. Mol Microbiol 14:681–689 [CrossRef]
    [Google Scholar]
  9. Heller K. B., Lin E. C., Wilson T. H. 1980; Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144:274–278
    [Google Scholar]
  10. Hohmann I., Bill R. M., Kayingo I., Prior B. A. 2000; Microbial MIP channels. Trends Microbiol 8:33–38 [CrossRef]
    [Google Scholar]
  11. Hulton C. S., Higgins C. F., Sharp P. M. 1991; ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834 [CrossRef]
    [Google Scholar]
  12. Ishibashi K., Sasaki S., Fushimi K.8 other authors 1994; Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273 [CrossRef]
    [Google Scholar]
  13. Jumas-Bilak E., Michaux-Charachon S., Bourg G., O’Callaghan D., Ramuz M. 1998; Differences in chromosome number and genome rearrangements in the genus Brucella. Mol Microbiol 27:99–106 [CrossRef]
    [Google Scholar]
  14. Le Caherec F., Deschamps S., Delamarche C., Pellerin I., Bonnec G., Guillam M. T., Thomas D., Gouranton J., Hubert J. F. 1996; Molecular cloning and characterization of an insect aquaporin: functional comparison with aquaporin 1. Eur J Biochem 241:707–715 [CrossRef]
    [Google Scholar]
  15. Lowrie D. B., Kennedy J. F. 1972; Erythritol and threitol in canine placenta: possible implication in canine brucellosis. FEBS Lett 23:69–72 [CrossRef]
    [Google Scholar]
  16. Meselson M., Yuan R. 1968; DNA restriction enzyme from E. coli. Nature 217:1110–1114 [CrossRef]
    [Google Scholar]
  17. Miao G. H., Verma D. P. 1993; Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell 5:781–794 [CrossRef]
    [Google Scholar]
  18. Muramatsu S., Mizuno T. 1989; Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res 17:4378
    [Google Scholar]
  19. Nakhoul N. L., Davis B. A., Romero M. F., Boron W. F. 1998; Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548
    [Google Scholar]
  20. Pao G. M., Wu L. F., Johnson K. D., Hofte H., Chrispeels M. J., Sweet G., Sandal N. N., Saier M. H. Jr 1991; Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5:33–37 [CrossRef]
    [Google Scholar]
  21. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of genomic DNA with guanidinium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  22. Preston G. M., Carroll T. P., Guggino W. B., Agre P. 1992; Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sanders O. I., Rensing C., Kuroda M., Mitra B., Rosen B. P. 1997; Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367
    [Google Scholar]
  25. Sangari F. J., Agüero J., Garcı́a-Lobo J. M. 2000; The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146:487–495
    [Google Scholar]
  26. Smith H., Williams A. E., Pearce J. H., Keppie J., Harris-Smith P. W., Fitzgeorge R. B., Witt K. 1962; Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature 193:47–49 [CrossRef]
    [Google Scholar]
  27. Sperry J. F., Robertson D. C. 1975; Erythritol catabolism by Brucella abortus. J Bacteriol 121:619–630
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Verkman A. S., Mitra A. K. 2000; Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28
    [Google Scholar]
  30. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  31. Walz T., Hirai T., Murata K., Heymann J. B., Mitsuoka K., Fujiyoshi Y., Smith B. L., Agre P., Engel A. 1997; The three-dimensional structure of aquaporin-1. Nature 387:624–627 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3251
Loading
/content/journal/micro/10.1099/00221287-146-12-3251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error