1887

Abstract

The Gram-positive eubacterium contains five chromosomally encoded type I signal peptidases (SPases) for the processing of secretory pre-proteins. Even though four of these SPases, denoted SipS, SipT, SipU and SipV, are homologous to the unique SPase I of , they are structurally different from that enzyme, being almost half the size and containing one membrane anchor instead of two. To investigate whether the unique membrane anchor of SPases is required for activity, soluble forms of SipS of , SipS of and SipC of the thermophile were constructed. Of these three proteins, only a hexa-histidine-tagged soluble form of SipS of could be isolated in significant quantities. This protein displayed optimal activity at pH 10, which is remarkable considering the fact that the catalytic domain of SPases is located in an acidic environment at the outer surface of the membrane of living cells. Strikingly, in contrast to what has been previously reported for the soluble form of the SPase, soluble SipS was active in the absence of added detergents. This observation can be explained by the fact that a highly hydrophobic surface domain of the SPase, implicated in detergent-binding, is absent from SipS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-909
2001-04-01
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470909a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-909&mimeType=html&fmt=ahah

References

  1. Bilgin N., Lee J. I., Zhu H. Y., Dalbey R. E., von Heijne G. 1990; Mapping of catalytically important domains in Escherichia coli leader peptidase. EMBO J 9:2717–2722
    [Google Scholar]
  2. Bolhuis A., Sorokin A., Azevedo V., Ehrlich S. D., Braun P. G., Venema G., Bron S, de Jong A., van Dijl J. M. 1996; Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol 22:605–618 [CrossRef]
    [Google Scholar]
  3. Bolhuis A., Tjalsma H., Stephenson K., Harwood C. R., Venema G., Bron S., van Dijl J. M. 1999a; Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J Biol Chem 274:15865–15868 [CrossRef]
    [Google Scholar]
  4. Bolhuis A., Tjalsma H., Smith H., Meima R., Venema G., Bron S, de Jong A., van Dijl J. M. 1999b; Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis . Appl Environ Microbiol 65:2934–2941
    [Google Scholar]
  5. Bolhuis A., Venema G., Quax W. J., Bron S., van Dijl J. M. 1999c; Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis . J Biol Chem 274:24531–24538 [CrossRef]
    [Google Scholar]
  6. Carlos J. L., Paetzel M., Brubaker G., Karla A., Ashwell C. M., Lively M. O., Cao G., Bullinger P., Dalbey R. E. 2000; The role of the membrane spanning domain of type I signal peptidase in substrate cleavage site selection. J Biol Chem 275:38813–38822 [CrossRef]
    [Google Scholar]
  7. Cregg K. M., Wilding E. I., Black M. T. 1996; Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus . J Bacteriol 178:5712–5718
    [Google Scholar]
  8. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138 [CrossRef]
    [Google Scholar]
  9. van Dijl J. M., de Jong A. Smith H., Bron S., Venema G. 1991a; Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis . J Gen Microbiol 137:2073–2084 [CrossRef]
    [Google Scholar]
  10. van Dijl J. M., de Jong A. Smith H., Bron S., Venema G. 1991b; Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli . Mol Gen Genet 227:40–48 [CrossRef]
    [Google Scholar]
  11. van Dijl J. M., de Jong A., Vehmaanperä J. Venema G., Bron S. 1992; Signal peptidase I of Bacillus subtilis : patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828
    [Google Scholar]
  12. van Dijl J. M., de Jong A. Venema G., Bron S. 1995; Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis : structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618 [CrossRef]
    [Google Scholar]
  13. van Klompenburg W. Paetzel M., Dalbey R. E., Demel R. A, de Jong J. M., von Heijne G., de Kruijff B. 1998; Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Lett 431:75–79 [CrossRef]
    [Google Scholar]
  14. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [CrossRef]
    [Google Scholar]
  15. Kuo D. W., Chan H. K., Wilson C. J., Griffin P. R., Williams H., Knight W. B. 1993; Escherichia coli leader peptidase: production of an active form lacking a requirement for detergent and development of peptide substrates. Arch Biochem Biophys 303:274–280 [CrossRef]
    [Google Scholar]
  16. Meijer W. J. J., Wisman G. B. A., Tjalsma H., Venema G., Bron S, de Jong A., van Dijl J. M. 1995; The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol 17:621–631 [CrossRef]
    [Google Scholar]
  17. Paetzel M., Dalbey R. E. 1997; Catalytic hydroxyl/amine dyads within serine proteases. Trends Biochem Sci 22:28–31 [CrossRef]
    [Google Scholar]
  18. Paetzel M., Dalbey R. E., Strynadka N.-C. J. 1998; Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396:186–190 [CrossRef]
    [Google Scholar]
  19. Pugsley A. P. 1993; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  20. van Roosmalen M. L. Jongbloed J. D. H., Kuipers A., Venema G., Bron S., van Dijl J. M. 2000; A truncated soluble Bacillus signal peptidase produced in Escherichia coli is subject to self-cleavage at its active site. J Bacteriol 182:5765–5770 [CrossRef]
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Smith H., Bron S., Venema G, van Ee J. 1987; Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis . J Bacteriol 169:3321–3328
    [Google Scholar]
  23. Smith H., Bron S., Venema G, de Jong A. 1988; Characterization of signal-sequence-coding regions selected from the Bacillus subtilis chromosome. Gene 70:351–361 [CrossRef]
    [Google Scholar]
  24. Stöver A. G. Driks A. 1999a; Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J Bacteriol 181:1664–1672
    [Google Scholar]
  25. Stöver A. G. Driks A. 1999b; Control of synthesis and secretion of the Bacillus subtilis protein YqxM. J Bacteriol 181:7065–7069
    [Google Scholar]
  26. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 6:60–89
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Tjalsma H., Noback M. A., Bron S., Venema G., Yamane K., van Dijl J. M. 1997; Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992 [CrossRef]
    [Google Scholar]
  29. Tjalsma H., Bolhuis A., Wiegert T., Schumann W., Broekhuizen C. P., Quax W. J., Venema G., Bron S, van Roosmalen M. L., van Dijl J. M. 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis : identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331 [CrossRef]
    [Google Scholar]
  30. Tjalsma H., Meijer W. J. J., Venema G., Bron S, van den Dolder J., van Dijl J. M. 1999a; The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis . J Bacteriol 181:2448–2454
    [Google Scholar]
  31. Tjalsma H., Zanen G., Venema G., Bron S., van Dijl J. M. 1999b; The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis . J Biol Chem 274:28191–28197 [CrossRef]
    [Google Scholar]
  32. Tokunaga M., Loranger J. M., Chang S. Y., Regue M., Chang S., Wu H. C. 1985; Identification of prolipoprotein signal peptidase and genomic organization of the lsp gene in Escherichia coli . J Biol Chem 260:5610–5615
    [Google Scholar]
  33. Tschantz W. R., Sung M., Delgado-Partin V. M., Dalbey R. E. 1993; A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354
    [Google Scholar]
  34. Tschantz W. R., Paetzel M., Cao G., Suciu D., Inouye M., Dalbey R. E. 1995; Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34:3935–3941 [CrossRef]
    [Google Scholar]
  35. Vehmaanperä J., Görner A. Venema G., Bron S., van Dijl J. M. 1993; In vitro assay for the Bacillus subtilis signal peptidase SipS: systems for efficient in vitro transcription–translation and processing of precursors of secreted proteins. FEMS Microbiol Lett 114:207–214 [CrossRef]
    [Google Scholar]
  36. Welsh K. M., Trach K. A., Folger C., Hoch J. A. 1994; Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis . J Bacteriol 176:7161–7168
    [Google Scholar]
  37. van Wely K. H. M. Swaving J., Driessen A. J. M. 1998; Translocation of the precursor of alpha-amylase into Bacillus subtilis membrane vesicles. Eur J Biochem 255:690–697 [CrossRef]
    [Google Scholar]
  38. Wertman K. F., Wyman A. R., Botstein D. 1986; Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene 49:253–262 [CrossRef]
    [Google Scholar]
  39. Wolfe P. B., Wickner W., Goodman J. M. 1983; Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J Biol Chem 258:12073–12080
    [Google Scholar]
  40. Wu X. C., Lee W., Tran L., Wong S.-L. 1991; Engineering a Bacillus subtilis expression–secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173:4952–4958
    [Google Scholar]
  41. Zwizinski C., Date T., Wickner W. 1981; Leader peptidase is found in both the inner and outer membranes of Escherichia coli . J Biol Chem 256:3593–3597
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-909
Loading
/content/journal/micro/10.1099/00221287-147-4-909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error