1887

Abstract

Expression of the phenol degradation pathway in strain PaW85 requires coordinated transcription of the plasmid-borne operon encoding catechol 1,2-dioxygenase and phenol monooxygenase, respectively, and the chromosomally encoded catechol degradation operon. Transcriptional activation from the and promoters is regulated by CatR and the catechol degradation pathway intermediate ,-muconate. Here it is shown that physiological control mechanisms are superimposed on this regulatory system. Transcriptional activation from the and promoters is growth-phase-regulated in cells grown on rich medium (LB medium). CatR-mediated transcription from these promoters is silenced on rich medium until the transition from exponential to stationary phase. A slight positive effect (threefold) of stationary-phase-specific sigma factor σ on transcription from the promoter was observed. Expression of the promoter was not influenced by the activity of this sigma factor. In contrast to rich growth medium, transcription from the and promoters in minimal medium containing a mixture of glucose and sodium benzoate was rapidly induced in exponential culture. It was shown that the presence of amino acids in the culture medium causes exponential silencing of the and promoters. The possibility that a hypothetical repressor protein could be involved in physiological control of transcription from the and promoters is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2149
2001-08-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472149a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2149&mimeType=html&fmt=ahah

References

  1. Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P. 1977; Two modes of loss of the TOL function from Pseudomonas putida mt-2. Mol Gen Genet 154:203–204 [CrossRef]
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Carmona M., Rodriguez M. J., Martinez-Costa O., de Lorenzo V. 2000; In vivo and in vitro effects of (p)ppGpp on the σ54 promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 182:4711–4718 [CrossRef]
    [Google Scholar]
  4. Carter P., Bedouelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13:4431–4443 [CrossRef]
    [Google Scholar]
  5. Cases I., de Lorenzo V. 1998; Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol 1:303–310 [CrossRef]
    [Google Scholar]
  6. Cases I., de Lorenzo V. 2000; Genetic evidence of distinct physiological regulation mechanisms in the σ54 Pu promoter of Pseudomonas putida. J Bacteriol 182:956–960 [CrossRef]
    [Google Scholar]
  7. Cases I., Perez-Martin J., de Lorenzo V. 1996; Involvement of σ54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Mol Microbiol 19:7–17 [CrossRef]
    [Google Scholar]
  8. Cases I., Perez-Martin J., de Lorenzo V. 1999; The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the σ54-dependent Pu promoter of the TOL plasmid. J Biol Chem 274:15562–15568 [CrossRef]
    [Google Scholar]
  9. Chugani S. A., Parsek M. R., Hershberger C. D., Murakami K., Ishihama A., Chakrabarty A. M. 1997; Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. J Bacteriol 179:2221–2227
    [Google Scholar]
  10. Gralla J. D., Collado-Vides J. 1996; Organization and function of transcription regulatory elements. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology , 2nd edn. pp 1232–1245 Edited by Neidhardt F. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E., Curtiss R. III, Ingraham J. L., Lin E. C. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  12. Harayama S., Timmis K. N. 1989; Catabolism of aromatic hydrocarbons by Pseudomonas . In Genetics of Bacterial Diversity pp 151–174 Edited by Hopwood D. A., Chater K. E. London: Academic Press;
    [Google Scholar]
  13. Harwood C. S., Parales R. E. 1996; The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590 [CrossRef]
    [Google Scholar]
  14. Hengge-Aronis R. 1999; Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148–152 [CrossRef]
    [Google Scholar]
  15. Hengge-Aronis R. 2000; The general stress response in Escherichia coli . In Bacterial Stress Responses pp 161–178 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Herrero M., Timmis K. N., de Lorenzo V. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  17. Hõrak R., Kivisaar M. 1998; Expression of the transposase gene tnpA of Tn 4652 is positively affected by integration host factor. J Bacteriol 180:2822–2829
    [Google Scholar]
  18. Houghton J. E., Brown T. M., Appel A. J., Hughes E. J., Ornston L. N. 1995; Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol 177:401–412
    [Google Scholar]
  19. Kasak L., Talvik K., Kivisaar M., Hõrak R., Nurk A. 1993; Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol 175:8038–8042
    [Google Scholar]
  20. Kivisaar M., Heinaru A., Habicht J., Hõrak R., Kasak L. 1990; Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24:25–36 [CrossRef]
    [Google Scholar]
  21. Kivisaar M., Kasak L., Nurk A. 1991; Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB , of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98:15–20 [CrossRef]
    [Google Scholar]
  22. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  23. de Lorenzo V., Cases I., Herrero M., Timmis K. N. 1993; Early and late responses of TOL promoters to pathway inducers: identification of postexponential promoters in Pseudomonas putida with lacZ-tet bicistronic reporters. J Bacteriol 175:6902–6907
    [Google Scholar]
  24. Marques S., Holtel A., Timmis K. N., Ramos J. 1994; Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J Bacteriol 176:2517–2524
    [Google Scholar]
  25. Marques S., Manzanera M., Gonzalez-Perez M.-M., Gallegos M.-T., Ramos J. L. 1999; The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with σ32 or σ38 depending on the growth phase. Mol Microbiol 31:1105–1113 [CrossRef]
    [Google Scholar]
  26. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  28. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  29. Ojangu E., Tover A., Kivisaar M. 2000; Effects of combination of different −10 hexamers and downstream sequences on stationary phase-specific sigma factor σS-dependent transcription in Pseudomonas putida. J Bacteriol 182:6707–6713 [CrossRef]
    [Google Scholar]
  30. Parsek M. R., Kivisaar M., Chakrabarty A. M. 1995; Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Mol Microbiol 15:819–828 [CrossRef]
    [Google Scholar]
  31. Ramos J. L., Marques S., Timmis K. N. 1997; Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51:341–373 [CrossRef]
    [Google Scholar]
  32. Rothmel R. K., Aldrich T. L., Houghton J. E., Coco W. M., Ornston L. N., Chakrabarty A. M. 1990; Nucleotide sequencing of Pseudomonas putida catR : positive regulator of the catBC operon is a member of LysR family. J Bacteriol 172:922–931
    [Google Scholar]
  33. Rothmel R. K., Shinabarger D. L., Parsek M. R., Aldrich T. L., Chakrabarty A. M. 1991; Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. J Bacteriol 173:4717–4724
    [Google Scholar]
  34. Sharma R. C., Schimke R. T. 1996; Preparation of electro-competent E. coli using salt-free growth medium. BioTechniques 20:42–44
    [Google Scholar]
  35. Sze C. C., Shingler V. 1999; The alarmone (p)ppGpp mediates physiological-responsive control at the σ54-dependent Po promoter. Mol Microbiol 31:1217–1228 [CrossRef]
    [Google Scholar]
  36. Sze C. C., Moore T., Shingler V. 1996; Growth phase-dependent transcription of the σ54-dependent Po promoter controlling the Pseudomonas -derived (methyl)phenol dmp operon of pVI150. J Bacteriol 178:3727–3735
    [Google Scholar]
  37. Tover A., Zernant J., Chugani S. A., Chakrabarty A. M., Kivisaar M. 2000; Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Microbiology 146:173–183
    [Google Scholar]
  38. Yuste L., Canosa I., Rojo F. 1998; Carbon-source-dependent expression of the P alkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180:5218–5226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2149
Loading
/content/journal/micro/10.1099/00221287-147-8-2149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error