1887

Abstract

A key intermediate for biodegradation of various distinct aromatic growth substrates in is protocatechuate (Pca), which is metabolized by the 4,5-extradiol () ring fission pathway. A locus harbouring genes from BR6020 was cloned, dubbed , which encodes the enzymes that degrade Pca. The identity of , encoding respectively the α- and β-subunit of the Pca ring-cleavage enzyme, was confirmed by N-terminal sequencing and molecular mass determination of both subunits from the separated enzyme. Disruption of resulted in a strain unable to grow on Pca and a variety of aromatic substrates funnelled through this compound (- and -hydroxybenzoate, -sulfobenzoate, phthalate, isophthalate, terephthalate, vanillate, isovanillate and veratrate). Growth on benzoate and -aminobenzoate (anthranilate) was not affected in this strain, indicating that these substrates are metabolized via a different lower pathway. Tentative functions for the products of other genes were assigned based on sequence identity and/or similarity to proteins from other proteobacteria involved in uptake or metabolism of aromatic compounds. This study provides evidence for a single lower pathway in for metabolism of Pca, which is generated by different upper pathways acting on a variety of aromatic substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2157
2001-08-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472157a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2157&mimeType=html&fmt=ahah

References

  1. Altenschmidt U., Oswald B., Steiner E., Herrmann H., Fuchs G. 1993; New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J Bacteriol 175:4851–4858
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Arciero D. M., Orville A. M., Lipscomb J. D. 1990; Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni . Methods Enzymol 188:89–95
    [Google Scholar]
  4. Assinder S. J., Williams P. A. 1990; The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69
    [Google Scholar]
  5. Ausubel F. M. 1992 Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Chang H. K., Zylstra G. J. 1998; Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537
    [Google Scholar]
  7. Collier L. S., Nichols N. N., Neidle E. L. 1997; benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. . J Bacteriol 179:5943–5946
    [Google Scholar]
  8. Dagley S., Geary P. J., Wood J. M. 1968; The metabolism of protocatechuate by Pseudomonas testosteroni . Biochem J 109:559–568
    [Google Scholar]
  9. Dennis D. A., Chapman P. J., Dagley S. 1973; Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta -fission. J Bacteriol 113:521–523
    [Google Scholar]
  10. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci USA 76:1648–1652 [CrossRef]
    [Google Scholar]
  11. Goyal A. K., Zylstra G. J. 1996; Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol 62:230–236
    [Google Scholar]
  12. Hara H., Masai E., Katayama Y., Fukuda M. 2000; The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6. J Bacteriol 182:6950–6957 [CrossRef]
    [Google Scholar]
  13. Harayama S., Kok M., Neidle E. L. 1992; Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601 [CrossRef]
    [Google Scholar]
  14. Harwood C. S., Parales R. E. 1996; The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590 [CrossRef]
    [Google Scholar]
  15. Harwood C. S., Nichols N. N., Kim M. K., Ditty J. L., Parales R. E. 1994; Identification of the pcaRKF gene cluster from Pseudomonas putida : involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488
    [Google Scholar]
  16. Junker F., Leisinger T., Cook A. M. 1994; 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1 . 13 . 11 . 2 and EC 1 . 14 . 12 .-) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140:1713–1722 [CrossRef]
    [Google Scholar]
  17. Junker F., Kiewitz R., Cook A. M. 1997; Characterization of the p -toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 179:919–927
    [Google Scholar]
  18. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  19. Kersten P. J., Dagley S., Whittaker J. W., Arciero D. M., Lipscomb J. D. 1982; 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J Bacteriol 152:1154–1162
    [Google Scholar]
  20. Kersten P. J., Chapman P. J., Dagley S. 1985; Enzymic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol 162:693–697
    [Google Scholar]
  21. Klenk H. P., Clayton R. A., Tomb J. F. 22 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370
    [Google Scholar]
  22. Laue H., Field J. A., Cook A. M. 1996; Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ Sci Technol 30:1129–1132 [CrossRef]
    [Google Scholar]
  23. Leveau J. H. J., Zehnder A. J. B., Van Der Meer J. R. 1998; The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134 (pJP4). J Bacteriol 180:2237–2243
    [Google Scholar]
  24. Lipscomb J. D., Orville A. M. 1992; Mechanistic aspects of dihyroxybenzoate dioxygenases. In Degradation of Environmental Pollutants by Micro-organisms and their Metalloenzymes pp 243–298 Edited by Sigel H., Sigel A. New York: Marcel Dekker;
    [Google Scholar]
  25. Locher H. H., Leisinger T., Cook A. M. 1989; Degradation of p -toluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage inPseudomonas ( Comamonas ) testosteroni T-2. J Gen Microbiol 135:1969–1978
    [Google Scholar]
  26. Locher H. H., Malli C., Hooper S., Vorherr T., Leisinger T., Cook A. M. 1991; Degradation of p -toluic acid ( p -toluenecarboxylic acid) and p -toluenesulphonic acid via oxygenation of the methyl sidechain is initiated by the same set of enzymes in Comamonas testosteroni T-2. J Gen Microbiol 137:2201–2208 [CrossRef]
    [Google Scholar]
  27. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol 235:386–405
    [Google Scholar]
  28. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  29. Mampel J. 2000; Transport- und Regulationsphänomene beim Abbau von 4-Toluolsulfonat in Comamonas testosteroni T-2. PhD thesisUniversity of Konstanz, Konstanz, Germany
    [Google Scholar]
  30. Maruyama K. 1979; Isolation and identification of the reaction product of α-hydroxy-γ-carboxymuconic ϵ-semialdehyde dehydrogenase. J Biochem 86:1671–1677
    [Google Scholar]
  31. Maruyama K. 1983a; Enzymes responsible for degradation of 4-oxalmesaconic acid in Pseudomonas ochraceae . J Biochem 93:567–574
    [Google Scholar]
  32. Maruyama K. 1983b; Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J Biochem 93:557–565
    [Google Scholar]
  33. Maruyama K. 1985; Purification and properties of γ-oxalomesaconate hydratase from Pseudomonas ochraceae grown with phthalate. Biochem Biophys Res Commun 128:271–277 [CrossRef]
    [Google Scholar]
  34. Maruyama K. 1990a; Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae grown on phthalate. J Biochem 108:327–333
    [Google Scholar]
  35. Maruyama K. 1990b; Activation of Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase by inorganic phosphate. J Biochem 108:334–340
    [Google Scholar]
  36. Maruyama K., Ariga N., Tsuda M., Deguchi K. 1978; Purification and properties of α-hydroxy-γ-carboxymuconic ϵ-semialdehyde dehydrogenase. J Biochem 83:1125–1134
    [Google Scholar]
  37. Masai E., Shinohara S., Hara H., Nishikawa S., Katayama Y., Fukuda M. 1999; Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181:55–62
    [Google Scholar]
  38. Masai E., Momose K., Hara H., Nishikawa S., Katayama Y., Fukuda M. 2000; Genetic and biochemical characterization of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. J Bacteriol 182:6651–6658 [CrossRef]
    [Google Scholar]
  39. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. B. 1992; Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694
    [Google Scholar]
  40. Michalover J. L., Ribbons D. W., Hughes H. 1973; 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni . Biochem Biophys Res Commun 55:888–896 [CrossRef]
    [Google Scholar]
  41. Nadeau L. J., Spain J. C. 1995; Bacterial degradation of m -nitrobenzoic acid. Appl Environ Microbiol 61:840–843
    [Google Scholar]
  42. Nakatsu C. H., Wyndham R. C. 1993; Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol 59:3625–3633
    [Google Scholar]
  43. Nakatsu C. H., Fulthorpe R. R., Holland B. A., Peel M. C., Wyndham R. C. 1995a; The phylogenetic distribution of a transposable dioxygenase from the Niagara River watershed. Mol Ecol 4:593–603 [CrossRef]
    [Google Scholar]
  44. Nakatsu C. H., Straus N. A., Wyndham R. C. 1995b; The nucleotide sequence of the Tn 5271 3-chlorobenzoate 3,4-dioxygenase genes ( cbaAB ) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495 [CrossRef]
    [Google Scholar]
  45. Nakatsu C. H., Providenti M., Wyndham R. C. 1997; The cis -diol dehydrogenase cbaC gene of Tn 5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate. Gene 196:209–218 [CrossRef]
    [Google Scholar]
  46. Nakazawa T., Hayashi E. 1977; Phthalate metabolism in Pseudomonas testosteroni : accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol 131:42–48
    [Google Scholar]
  47. Nakazawa T., Hayashi E. 1978; Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni : purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol 36:264–269
    [Google Scholar]
  48. Nichols N. N., Harwood C. S. 1997; PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida . J Bacteriol 179:5056–5061
    [Google Scholar]
  49. Noda Y., Nishikawa S., Shiozuka K. 7 other authors 1990; Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172:2704–2709
    [Google Scholar]
  50. Pao S. S., Paulsen I. T., Saier M. H. Jr 1998; Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34
    [Google Scholar]
  51. Parke D. 1992; Application of p -toluidine in chromogenic detection of catechol and protocatechuate, diphenolic intermediates in catabolism of aromatic compounds. Appl Environ Microbiol 58:2694–2697
    [Google Scholar]
  52. Peel M. C., Wyndham R. C. 1999; Selection of clc, cba , and fcb chlorobenzoate-catabolic genotypes from ground-water and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill. Appl Environ Microbiol 65:1627–1635
    [Google Scholar]
  53. Peng X., Masai E., Katayama Y., Fukuda M. 1999; Characterization of the meta -cleavage compound hydrolase gene involved in degradation of the lignin-related biphenyl structure by Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 65:2789–2793
    [Google Scholar]
  54. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  55. Reineke W. 1998; Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331 [CrossRef]
    [Google Scholar]
  56. Ribbons D. W. 1971; Requirement of two protein fractions for O -demethylase activity in Pseudomonas testosteroni . FEBS Lett 12:161–165 [CrossRef]
    [Google Scholar]
  57. Schläfli H. R., Weiss M. A., Leisinger T., Cook A. M. 1994; Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652
    [Google Scholar]
  58. Spence E. L., Kawamukai M., Sanvoisin J., Braven H., Bugg T. D. 1996; Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol 178:5249–5256
    [Google Scholar]
  59. Sugimoto K., Senda T., Aoshima H., Masai E., Fukuda M., Mitsui Y. 1999; Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Struct Fold Design 7:953–965 [CrossRef]
    [Google Scholar]
  60. Tralau T., Cook A. M., Ruff J. 2001; Map of the IncP1β plasmid pTSA encoding the widespread genes ( tsa ) for p -toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516 [CrossRef]
    [Google Scholar]
  61. Wang Y. Z., Zhou Y., Zylstra G. J. 1995; Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12 [CrossRef]
    [Google Scholar]
  62. Wheelis M. L., Palleroni N. J., Stanier R. Y. 1967; The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans . Arch Microbiol 59:302–314
    [Google Scholar]
  63. Wyndham R. C. 1986; Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water. Appl Environ Microbiol 51:781–789
    [Google Scholar]
  64. Wyndham R. C., Singh R. K., Straus N. A. 1988; Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol 150:237–243 [CrossRef]
    [Google Scholar]
  65. Ziegler K., Buder R., Winter J., Fuchs G. 1989; Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch Microbiol 151:171–176 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2157
Loading
/content/journal/micro/10.1099/00221287-147-8-2157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error