1887

Abstract

The starvation survival response (SSR) of EGD is induced under glucose- or multiple-nutrient-, but not amino-acid limitation. 001–02% of the population remain viable even after 20 d and the survivors show a reduced cell size and increased cross-protection to several environmental stresses. The development of the SSR may therefore be important in survival in the food environment. The initiation, but not the maintenance, of the SSR involves both protein and cell wall biosynthesis. It is also likely that nutrients released from dead cells are recycled to allow survival of the remaining population. To define the molecular mechanisms involved in the initiation, maintenance and release from the SSR the role of known, and novel, components was examined. The well-characterized regulators SigB and PrfA are both required for the full SSR and effect stress resistance during growth and starvation. A transposon mutagenesis screen identified two novel loci with roles in the SSR and stress resistance. Characterization of the transposon insertion sites revealed a putative homologue of the gene from and a gene of unknown function. The potential individual and combined roles of the SSR components are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2275
2001-08-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472275a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2275&mimeType=html&fmt=ahah

References

  1. Aldea M., Hernandez Chico C., Kushner S. R., Vicente M., de la Campa A. G. 1988; Identification, cloning, and expression of bolA , an ftsZ -dependent morphogene of Escherichia coli . J Bacteriol 170:5169–5176
    [Google Scholar]
  2. Antelmann H., Bernhardt J., Schmid R., Mach H., Hecker M., Völker U. 1997; First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis . Electrophoresis 18:1451–1463 [CrossRef]
    [Google Scholar]
  3. Beck von Bodman S., Hayman G. T., Farrand S. K. 1992; Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89:643–647 [CrossRef]
    [Google Scholar]
  4. Becker L. A., Hutkins R. W., Benson A. K., Çetin M. S. 1998; Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180:4547–4554
    [Google Scholar]
  5. Beers R. F., Sizer I. W. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
    [Google Scholar]
  6. Behari J., Youngman P. 1998; Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun 66:3635–3642
    [Google Scholar]
  7. Bernhardt J., Antelmann H., Schmid R., Mach H., Hecker M., Völker U., Völker A. 1997; Specific and general stress proteins in Bacillus subtilis – a two-dimensional protein electrophoresis study. Microbiology 143:999–1017 [CrossRef]
    [Google Scholar]
  8. Böckmann R., Dickneite C., Middendorf B., Goebel W., Sokolovic Z. 1996; Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22:643–653 [CrossRef]
    [Google Scholar]
  9. Bolton L. F., Frank J. F. 1999; Simple method to observe the adaptive response of Listeria monocytogenes in food. Lett Appl Microbiol 29:350–353 [CrossRef]
    [Google Scholar]
  10. Camilli A., Portnoy D. A., Youngman P. 1990; Insertional mutagenesis of Listeria monocytogenes with a novel Tn 917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172:3738–3744
    [Google Scholar]
  11. Casadei M. A., Harrison S. T., Gaze J. E., Esteves de Matos R. 1998; Heat resistance of Listeria monocytogenes in dairy products as affected by the growth medium. J Appl Microbiol 84:234–239 [CrossRef]
    [Google Scholar]
  12. Cashel M., Gentry D. R., Hernandez V. J., Vinella D. 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp 1458–1496 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Chan P. F., Foster S. J., Ingham E., Clements M. O. 1998; The Staphylococcus aureus alternative sigma factor σB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 180:6082–6089
    [Google Scholar]
  14. Clements M. O., Watson S. P., Foster S. J. 1999; Characterisation of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181:3898–3903
    [Google Scholar]
  15. Dallmier A. W., Martin S. E. 1988; Catalase and superoxide dismutase activities after heat injury of Listeria monocytogenes . Appl Environ Microbiol 54:581–582
    [Google Scholar]
  16. Dallmier A. W., Martin S. E. 1990; Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride. Appl Environ Microbiol 56:2807–2810
    [Google Scholar]
  17. Derré I., Rapoport G., Msadek T. 1999; CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–131 [CrossRef]
    [Google Scholar]
  18. Dukan S., Nyström T. 1998; Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441 [CrossRef]
    [Google Scholar]
  19. Engelmann S., Hecker M. 1996; Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE . FEMS Microbiol Lett 145:63–69 [CrossRef]
    [Google Scholar]
  20. Farber J. M., Peterkin P. I. 1991; Listeria monocytogenes , a food-borne pathogen. Microbiol Rev 55:476–511
    [Google Scholar]
  21. Foster J. W., Spector M. P. 1995; How Salmonella survive against the odds. Annu Rev Microbiol 49:145–174 [CrossRef]
    [Google Scholar]
  22. Gahan C. G. M., O’Driscoll B., Hill C. 1996; Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microbiol 62:3128–3132
    [Google Scholar]
  23. Hanawa T., Yamamoto T., Kamiya S. 1995; Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun 63:4595–4599
    [Google Scholar]
  24. Hartke A., Bouche S., Gansel X., Boutibonnes P., Auffray Y. 1994; Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60:3474–3478
    [Google Scholar]
  25. Hecker M., Völker U. 1998; Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σB regulon. Mol Microbiol 29:1129–1136 [CrossRef]
    [Google Scholar]
  26. Hengge-Aronis R. 1996; Regulation of gene expression during entry to stationary phase. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp 1497–1512 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Hodgson D. A. 2000; Generalised transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes . Mol Microbiol 35:312–323 [CrossRef]
    [Google Scholar]
  28. Jenkins D. E., Schultz J. E., Matin A. 1988; Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli . J Bacteriol 170:3910–3914
    [Google Scholar]
  29. Kjelleberg S., Albertson N., Flardh K., Holmquist L., Jouper-Jaan A., Marouga J., Ostling J., Svenblad B., Wiechart D. 1993; How do non-differentiating bacteria adapt to starvation?. Antonie Leeuwenhoek 63:333–341 [CrossRef]
    [Google Scholar]
  30. Kolter R., Siegele D. A., Tormo A. 1993; The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874 [CrossRef]
    [Google Scholar]
  31. Kullik I., Giachino P. 1997; The alternative sigma factor σB in Staphylococcus aureus : regulation of the sigB operon in response to growth phase and heat shock . Arch Microbiol 167:151–159 [CrossRef]
    [Google Scholar]
  32. Lampidis R., Gross R., Sokolovic Z., Goebel W., Kreft J. 1994; The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the CRP-FNR family of transcription regulators. Mol Microbiol 13:141–151 [CrossRef]
    [Google Scholar]
  33. Lange R., Hengge-Aronis R. 1991; Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173:4474–4481
    [Google Scholar]
  34. Leimeister-Wächter M., Domann E., Chakraborty T. 1992; The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 174:947–952
    [Google Scholar]
  35. Lou W. Q., Yousef A. E. 1996; Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J Food Prot 59:465–471
    [Google Scholar]
  36. Matin A. 1991; The molecular basis of carbon-starvation-induced general resistance in Escherichia coli . Mol Microbiol 5:3–10 [CrossRef]
    [Google Scholar]
  37. Mengaud J., Dramsi S., Gouin E., Vazquez-Boland J.-A., Milon G., Cossart P. 1991; Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283 [CrossRef]
    [Google Scholar]
  38. Morton D. S., Oliver J. D. 1994; Induction of carbon starvation-induced proteins in Vibrio vulnificus . Appl Environ Microbiol 60:3653–3659
    [Google Scholar]
  39. Mukamolova G. L., Yanopolskaya N. D., Votyakova T. V., Popov V. I., Kaprelyants A. S., Kell D. B. 1995; Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch Microbiol 163:373–379 [CrossRef]
    [Google Scholar]
  40. Nyström T. 1999; Starvation, cessation of growth and bacterial ageing. Curr Opin Microbiol 2:214–219 [CrossRef]
    [Google Scholar]
  41. Nyström T., Olsson R. M., Kjelleberg S. 1992; Survival, stress resistance and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol 58:55–65
    [Google Scholar]
  42. O’Driscoll B., Gahan C. G. M., Hill C. 1996; Adaptive acid tolerance in Listeria monocytogenes : isolation of an acid tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698
    [Google Scholar]
  43. Reeve C. A., Amy P. S., Matin A. 1984; Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160:1041–1046
    [Google Scholar]
  44. Ripio M.-T., Vazquez-Boland J.-A., Vega Y., Nair S., Berche P. 1998; Evidence for expressional crosstalk between the central virulence factor PrfA and the stress response mediator ClpC in Listeria monocytogenes . FEMS Microbiol Lett 158:45–50 [CrossRef]
    [Google Scholar]
  45. Rouquette C., Ripio M.-T., Pellegrini E., Bolla J.-M., Tascon R. I., Vazquez-Boland J.-A., Berche P. 1996; Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes . Mol Microbiol 21:977–987 [CrossRef]
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Seymour R. L., Khan M. A., Spector M. P. 1996; Essential roles of core starvation stress response loci in carbon-starvation-inducible cross-resistance and hydrogen peroxide-inducible adaptive resistance to oxidative challenge in Salmonella typhimurium . Mol Microbiol 20:497–505 [CrossRef]
    [Google Scholar]
  48. Siegele D. A., Almiron M., Kolter R. 1993; Approaches to the study of survival and death in stationary phase Escherichia coli . In Starvation in Bacteria pp 151–167 Edited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  49. Spector M. P., Cubitt C. L. 1992; Starvation-inducible loci of Salmonella typhimurium – regulation and roles in starvation survival. Mol Microbiol 6:1467–1476 [CrossRef]
    [Google Scholar]
  50. Trivett T. L., Meyer E. A. 1971; Citrate cycle and related metabolism of Listeria monocytogenes . J Bacteriol 107:770–779
    [Google Scholar]
  51. Völker U., Maul B., Hecker M. 1999; Expression of the σB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis . J Bacteriol 181:3942–3948
    [Google Scholar]
  52. Watson S. P., Clements M. O., Foster S. J. 1998a; Characterisation of the starvation-survival response of Staphylococcus aureus . J Bacteriol 180:1750–1758
    [Google Scholar]
  53. Watson S. P., Antonio M., Foster S. J. 1998b; Isolation and characterisation of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery. Microbiology 144:3159–3169 [CrossRef]
    [Google Scholar]
  54. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J. 1998; General stress transcription factor σB and its role in acid tolerance and virulence of Listeria monocytogenes . J Bacteriol 180:3650–3656
    [Google Scholar]
  55. Wuenscher M. D., Kohler S., Bubert A., Gerike U., Goebel W. 1993; The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2275
Loading
/content/journal/micro/10.1099/00221287-147-8-2275
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error