1887

Abstract

Selenium oxyanions, particularly selenite, can be highly toxic to living organisms. Few bacteria reduce both selenate and selenite into the less toxic elemental selenium. Insights into the mechanisms of the transport and the reduction of selenium oxyanions in were provided by a genetic analysis based on transposon mutagenesis. Ten mutants impaired in selenate reduction were analysed. Three of them were altered in genes encoding transport proteins including a porin, an inner-membrane protein and a sulfate carrier. Two mutants were altered in genes required for molybdopterin biosynthesis, strongly suggesting that the selenate reductase of is a molybdoenzyme. However, mutants deleted in various oxomolybdenum enzymes described so far in this species still reduced selenate. Finally, a mutant in the gene encoding a putative oxidoreductase was obtained. This gene is located upstream of and in the putative operon. YgfN and YgfM code for a molybdopterin-containing enzyme and a polypeptide carrying a FAD domain, respectively. It is therefore proposed that the selenate reductase of is a structural complex including the proteins YgfK, YgfM and YgfN. In addition, all the various mutants were still able to reduce selenite into elemental selenium. This implies that the transport and reduction of this compound are clearly distinct from those of selenate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3865
2002-12-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483865a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3865&mimeType=html&fmt=ahah

References

  1. Ansaldi M., Bordi C., Lepelletier M., Mejean V. 1999; TorC apocytochrome negatively autoregulates the trimethylamine N-oxide (TMAO) reductase operon in Escherichia coli . Mol Microbiol 33:284–295 [CrossRef]
    [Google Scholar]
  2. Avazeri C., Turner R. J., Pommier J., Weiner J. H., Giordano G., Vermeglio A. 1997; Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189 [CrossRef]
    [Google Scholar]
  3. Bebien M., Chauvin J. P., Adriano J. M., Grosse S., Vermeglio A. 2001; Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides . Appl Environ Microbiol 67:4440–4447 [CrossRef]
    [Google Scholar]
  4. Bebien M., Lagniel G., Garin J., Touati D., Vermeglio A., Labarre J. 2002; Involvement of superoxide dismutases in Escherichia coli cellular response in selenium oxides stress. J Bacteriol 184:1556–1564 [CrossRef]
    [Google Scholar]
  5. Brown T. A., Shrift A. 1980; Assimilation of selenate and selenite by Salmonella typhimurium . Can J Microbiol 26:671–675 [CrossRef]
    [Google Scholar]
  6. Bryant R. D., Laishley E. J. 1988; Evidence for two transporters of sulfur and selenium oxyanions in Clostridium pasteurianum . Can J Microbiol 34:700–703 [CrossRef]
    [Google Scholar]
  7. Carlin A., Weiping S. H. I., Saibal D., Rosen B. P. 1995; The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986
    [Google Scholar]
  8. Darwin A., Tormay P., Page L., Griffiths L., Cole J. 1993; Identification of the formate dehydrogenases and the genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12. J Gen Microbiol 139:1829–1840 [CrossRef]
    [Google Scholar]
  9. DeMoll-Decker H., Macy J. M. 1993; The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247
    [Google Scholar]
  10. Ganther H. E. 1968; Formation of selenotrisulfides by the reaction of thiols with selenious acid. Biochemistry 7:2898–2905 [CrossRef]
    [Google Scholar]
  11. Gerrard T. L., Telford J. N., Williams H. H. 1974; Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119:1057–1060
    [Google Scholar]
  12. Guzzo J., Dubow M. S. 2000; A novel selenite- and tellurite-inducible gene in Escherichia coli . Appl Environ Microbiol 66:4972–4978 [CrossRef]
    [Google Scholar]
  13. Hess W. M. 1966; Fixation and staining of fungus hyphae and host plant root tissues for electron microscopy. Stain Technol 41:27–35
    [Google Scholar]
  14. Hille R. 1996; The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816 [CrossRef]
    [Google Scholar]
  15. Hussain H., Grove J., Griffiths L., Busby S., Cole J. 1994; A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 12:153–163 [CrossRef]
    [Google Scholar]
  16. Iobbi-Nivol C., Santini C. L., Blasco F., Giordano G. 1990; Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur J Biochem 188:679–687 [CrossRef]
    [Google Scholar]
  17. Kice J. L., Lee T. W. S., Pan S-t. 1980; Mechanism of the reaction of thiols with selenite. J Am Chem Soc 18:102–113
    [Google Scholar]
  18. Krafft T., Bowen A., Theis F., Macy J. M. 2000; Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis . DNA Seq 10:365–377
    [Google Scholar]
  19. Kramer G. F., Ames B. N. 1988; Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium . Mutat Res 201:169–180 [CrossRef]
    [Google Scholar]
  20. Kredich N. M. others 1996; Synthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 514–527 Edited by Neidhardt C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Linblow-Kull C., Kull F. J., Shrift A. 1985; Single transporter of sulfate, selenate, and selenite in Escherichia coli K-12. J Bacteriol 163:1267–1269
    [Google Scholar]
  22. Losi M. E., Frankenberger W. T. 1997; Bioremediation of selenium in soil and water. Soil Sci 162:692–703 [CrossRef]
    [Google Scholar]
  23. McKeehan W. L., Hamilton W. G., Ham R. G. 1976; Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A 73:2023–2027 [CrossRef]
    [Google Scholar]
  24. Moreno-Vivian C., Cabello P., Martinez-Luque M., Blasco R., Castillo F. 1999; Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584
    [Google Scholar]
  25. Noda M., Takano T., Sakurai H. 1979; Mutagenic activity of selenium compounds. Mutat Res 66:175–179 [CrossRef]
    [Google Scholar]
  26. Ohlendorf H. M., Santolo G. M. 1994; Kesterson reservoir – past, present and future: an ecological risk assessment. In Selenium in the Environment pp 69–117 Edited by Frankenberger J. R., Benson S. New York: Marcel Dekker;
    [Google Scholar]
  27. Oremland R. S. 1994; Biogeochemical transformations of selenium in anoxic environments. In Selenium in the Environment pp 389–420 Edited by Frankenberger J. R., Benson S. New York: Marcel Dekker;
    [Google Scholar]
  28. Potter L. C., Millington P. D., Thomas G. H., Rothery R. A., Giordano G., Cole J. 2000; Novel growth characteristics and high rates of nitrate reduction of an Escherichia coli strain, LCB2048, that expresses only a periplasmic nitrate reductase. FEMS Microbiol Lett 185:51–57 [CrossRef]
    [Google Scholar]
  29. Prinz W. A., Åslund F., Holmgren A., Beckwith J. 1997; The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667 [CrossRef]
    [Google Scholar]
  30. Rosentel J. K., Healy F., Maupin-Furlow J. A., Lee J. H., Shanmugam K. T. 1995; Molybdate and regulation of mod (molybdate transport) fdhF , and hyc (formate hydrogenlyase) operons in Escherichia coli . J Bacteriol 177:4857–4864
    [Google Scholar]
  31. Roux M., Sarret G., Pignot-Paintrand I., Fontecave M., Coves J. 2001; Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67:769–773 [CrossRef]
    [Google Scholar]
  32. Sabaty M., Avazeri C., Pignol D., Adriano J. M., Vermeglio A. 2001; Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67:5122–5126 [CrossRef]
    [Google Scholar]
  33. Saiki M. K., Lowe T. P. 1987; Selenium in aquatic organisms from subsurface agricultural drainage water, San Joaquin Valley, California. Arch Environ Contam Toxicol 16:657–670 [CrossRef]
    [Google Scholar]
  34. Schiering N., Kabsch W., Moore M. J., Distefano M. D., Walsh C. T., Pai E. F. 1991; Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352:168–172 [CrossRef]
    [Google Scholar]
  35. Schröder I., Rech S., Krafft T., Macy J. M. 1997; Purification and characterization of the selenate reductase from Thauera selenatis . J Biol Chem 272:23765–23768 [CrossRef]
    [Google Scholar]
  36. Seko Y., Imura N. 1997; Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10:333–339
    [Google Scholar]
  37. Shamberger R. J. 1983; The biochemistry of selenium. In Selenium in Biology pp 1–334 Edited by Frieden E. New York: Plenum;
    [Google Scholar]
  38. Silverberg B. A., Wong P. T. S., Chau Y. K. 1976; Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch Microbiol 107:1–6 [CrossRef]
    [Google Scholar]
  39. Smith F. W., Hawkesford M. J., Prosser I. M., Clarkson D. T. 1995; Isolation of cDNA from Saccharomyces cerevisiae that encodes a high affinity sulfate transporter at the plasma membrane. Mol Gen Genet 247:709–715 [CrossRef]
    [Google Scholar]
  40. Stadtman T. C. 1974; Selenium biochemistry. Science 183:915–922 [CrossRef]
    [Google Scholar]
  41. Stadtman T. C. 1996; Selenocysteine. Annu Rev Biochem 65:83–100 [CrossRef]
    [Google Scholar]
  42. Stewart V., MacGregor C. H. 1982; Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol 151:788–799
    [Google Scholar]
  43. Turner R. J., Weiner J. H., Taylor D. E. 1998; Selenium metabolism in Escherichia coli . Biometals 11:223–227 [CrossRef]
    [Google Scholar]
  44. Van Fleet-Stalder V., Chasteen T. G., Pickering I. J., George G. N., Prince R. C. 2000; Fate of selenate and selenite metabolized by Rhodobacter sphaeroides . Appl Environ Microbiol 66:4849–4853 [CrossRef]
    [Google Scholar]
  45. Yamada A., Miyashita M., Inoue K., Matsunaga T. 1997; Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48:367–372 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3865
Loading
/content/journal/micro/10.1099/00221287-148-12-3865
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error