1887

Abstract

The enzyme 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyses the first step in aromatic amino acid biosynthesis in prokaryotes, plants and fungi. Cells of contain two catalytically redundant DAHP synthases, encoded by the genes and , whose activities are feedback-inhibited by phenylalanine and tyrosine, respectively. / gene transcription is controlled by . The authors previously cloned an gene orthologue from and found that: (1) it can complement an double mutation in , an effect inhibited by excess phenylalanine, and (2) a homozygous -deletion mutant of is phenotypically Aro, suggesting the existence of another isozyme(s). They now report the identification and functional characterization of the orthologue of Aro4p. The two Aro4p enzymes share 68% amino acid identity. Phylogenetic analysis places the fungal DAHP synthases in a cluster separate from prokaryotic orthologues and suggests that and arose from a single gene via a gene duplication event early in fungal evolution. mRNA is elevated upon amino acid starvation, consistent with the presence of three putative Gcn4p-responsive elements (GCREs) in the gene promoter sequence. complements an double mutation in , an effect inhibited by excess tyrosine. The authors engineered Δ Δ:: cells of (with one wild-type copy of placed under control of the repressible promoter) and found that they fail to grow in the absence of aromatic amino acids when expression is repressed, and that this growth defect can be partially rescued by aromatic amino acids and certain aromatic amino acid pathway intermediates. It is concluded that, like , contains two DAHP synthases required for the first step in the aromatic amino acid biosynthetic pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-5-1291
2002-05-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/5/1481291a.html?itemId=/content/journal/micro/10.1099/00221287-148-5-1291&mimeType=html&fmt=ahah

References

  1. Alani E., Cao L., Kleckner N. 1987; A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Bently R. 1990; The shikimate pathway – a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384 [CrossRef]
    [Google Scholar]
  5. Braus G. H. 1991; Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae ; a model for the regulation of eukaryotic biosynthetic pathway. Microbiol Rev 55:349–370
    [Google Scholar]
  6. Care R. S., Trevethick J., Binley K. M., Sudbery P. E. 1999; The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:972–978
    [Google Scholar]
  7. Dayhoff M. O., Eck R. V., Park C. M. 1972; A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure pp 89–99 Edited by Dayhoff M. O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  8. Ebbole D. J., Paluh J. L., Plamann M., Sachs M. S., Yanofsky C. 1991; cpc-1 , the general regulatory gene for genes of amino acid biosynthesis in Neurospora crassa , is differentially expressed during the asexual life cycle. Mol Cell Biol 11:928–934
    [Google Scholar]
  9. Felsenstein J. 1993; phylip (Phylogeny Inference Package) version 3.57c. Distributed by the author http://evolution.genetics.washington.edu/phylip.html Department of Genetics, University of Washington; Seattle:
  10. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  11. Gietz D., St Jean A., Woods R. A., Schiestl R. H. 1992; Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425 [CrossRef]
    [Google Scholar]
  12. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  13. Hashida-Okado T., Ogawa A., Takesako K. 1998; Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selectable marker. FEBS Lett 425:117–122 [CrossRef]
    [Google Scholar]
  14. Hicks J. B., Herskowitz I. 1976; Interconversion of yeast mating types. I. Direct observation of the action of the homothallism (HO) gene. Genetics 83:245–258
    [Google Scholar]
  15. Hinnebusch A. G. 1990; Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae . Microbiol Rev 52:248–273
    [Google Scholar]
  16. Hinnebusch A. G., Fink G. R. 1983; Positive regulation in the general control of Saccharomyces cerevisiae . Proc Natl Acad Sci USA 80:5374–5378 [CrossRef]
    [Google Scholar]
  17. Kirsch D. R., Whitney R. R. 1991; Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun 59:3297–3300
    [Google Scholar]
  18. Kishore G. M., Shah D. M. 1988; Amino acid inhibitors as herbicides. Annu Rev Biochem 57:627–663 [CrossRef]
    [Google Scholar]
  19. Klar A. J. S., Kakar S. N., Ivy J. M., Hicks J. B., Livi G. P., Miglio L. M. 1985; SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae . Genetics 111:745–758
    [Google Scholar]
  20. Koser P. L., Livi G. P., Levy M. A., Rosenberg M., Bergsma D. J. 1990; A Candida albicans homolog of a human cyclophilin gene encodes a peptidyl-prolyl cis-trans isomerase. Gene 96:189–195 [CrossRef]
    [Google Scholar]
  21. Kunzler M., Paravicini G., Egli C. M., Iriger S., Braus G. 1992; Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase from Saccharomyces cerevisiae . Gene 113:67–74 [CrossRef]
    [Google Scholar]
  22. Losberger C., Ernst J. F. 1989; Sequence and transcript analysis of the C. albicans URA3 gene encoding orotidine-5′-phosphate decarboxylase. Curr Genet 3:153–158
    [Google Scholar]
  23. Manning M., Snoddy C. B., Fromtling R. A. 1984; Comparative pathogenicity of auxotrophic mutants of Candida albicans . Can J Microbiol 30:31–35 [CrossRef]
    [Google Scholar]
  24. Nimmo G. A., Coggins J. R. 1981; Some kinetic properties of the tryptophan-sensitive 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase from Neurospora crassa . Biochem J 199:657–665
    [Google Scholar]
  25. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  26. Paravicini G., Braus G., Hutter R. 1988; Structure of the ARO3 gene of Saccharomyces cerevisiae . Mol Gen Genet 214:165–169 [CrossRef]
    [Google Scholar]
  27. Paravicini G., Mosch H.-U., Schmidheini T., Braus G. 1989; The general control activator protein GCN4 is essential for basal ARO3 gene expression in Saccharomyces cerevisiae . Mol Cell Biol 9:144–151
    [Google Scholar]
  28. Pereira S. A., Livi G. P. 1993; Cloning and expression of the ARO3 gene encoding DAHP synthase from Candida albicans . Gene 132:159–165 [CrossRef]
    [Google Scholar]
  29. Pereira S. A., Livi G. P. 1995; A GCN-like response in Candida albicans . Cell Biol Int 19:65–69 [CrossRef]
    [Google Scholar]
  30. Pereira S. A., Livi G. P. 1996; Aromatic amino-acid biosynthesis in Candida albicans : identification of the ARO4 gene encoding a second DAHP synthase. Curr Genet 29:441–445 [CrossRef]
    [Google Scholar]
  31. Perfect J. R., Toffaletti D. L., Rude T. H. 1993; The gene encoding phosphoribosylaminoimidazole carboxylase ( ADE2 ) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 61:4446–4451
    [Google Scholar]
  32. Rosenbluh A., Mevarech M., Koltin Y., Gorman J. 1985; Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae . Mol Gen Genet 200:500–502 [CrossRef]
    [Google Scholar]
  33. Sanglard D., Ischer F., Monod M., Bille J. 1996; Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40:2300–2305
    [Google Scholar]
  34. Sathe G. M., O’Brien S., McLaughlin M. M., Watson F., Livi G. P. 1991; Use of polymerase chain reaction for rapid detection of gene insertions in whole-yeast cells. Nucleic Acids Res 19:4775 [CrossRef]
    [Google Scholar]
  35. Shepherd M. G. 1985; Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect Immun 50:541–544
    [Google Scholar]
  36. Shumilin I. A., Kretsinger R. H., Bauerle R. H. 1999; Crystal structure of phenylalanine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli . Structure Fold Des 7:865–875 [CrossRef]
    [Google Scholar]
  37. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  38. Swofford D. L. 1999; paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4: Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  39. Teshiba N., Furter R., Neiderberger P., Braus G., Paravicini G., Hutter R. 1986; Cloning of the ARO3 gene of Saccahromyces cerevisiae and its regulation. Mol Gen Genet 205:353–357 [CrossRef]
    [Google Scholar]
  40. Thompson J. D., Higgin D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Warit S., Zhang N., Short A., Walmsley R. M., Oliver S. G., Stateva L. I. 2000; Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Mol Microbiol 36:1156–1166 [CrossRef]
    [Google Scholar]
  42. Wilson B. R., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  43. Yesland K., Fonzi W. A. 2000; Allele-specific gene targeting in Candida albicans results from heterology between alleles. Microbiology 146:2097–2104
    [Google Scholar]
  44. Zaret K. S., Sherman F. 1982; DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-5-1291
Loading
/content/journal/micro/10.1099/00221287-148-5-1291
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error