1887

Abstract

switches spontaneously, reversibly and at high frequency among the following four phenotypes distinguishable by graded colony colouration on CuSO-containing agar: white (Wh), light brown (LB), dark brown (DB) and very dark brown (vDB). These phenotypes also differ in a graded fashion in the level of expression of the metallothionein gene (Wh<LB<DB>vDB), the frequency of switching (Wh>LB>DB>vDB) and colouration on phloxine B-containing agar (Wh>LB>DB>vDB). Switching among the four graded phenotypes is referred to as ‘the core switching system’. An additional switch phenotype, ‘irregular wrinkle’ (IWr), has been identified, which exhibits a highly wrinkled colony morphology. The characteristics of IWr suggest that switching to and from this phenotype represents a second high-frequency switching system. A microscopic analysis revealed that during the first 3 days of colony development, cells in the centres of Wh, LB, DB and vDB colonies expressed almost exclusively the budding yeast phenotype. After 3 days, however, pseudohyphae and cells extending tubes accumulated, so that by 7 days the proportions of these two cellular phenotypes reached 40–50% and 10–20%, respectively. In contrast, IWr colonies were composed almost exclusively of pseudohyphae through the first 6 days of colony development. After 6 days, IWr colonies began to accumulate both budding yeast cells and tubes. The tubes formed by reached lengths of up to six cell diameters, but the tubes did not represent traditional compartmentalized hyphae. Tube growth ended when the tube tip expanded to form a bud. Tubes then functioned as corridors for daughter nucleus migration to the apical bud, and were ultimately left uncompartmentalized and nucleus free. Core switching, pseudohypha formation and tube formation occurred in a majority of 62 tested clinical isolates, demonstrating that these developmental programmes are general characteristics of most strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2661
2002-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482661a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2661&mimeType=html&fmt=ahah

References

  1. Anderson J., Cundiff L., Schnars B., Gao M., Mackenzie I., Soll D. R. 1989; Hypha formation in the white-opaque transition of Candida albicans . Infect Immun 57:458–467
    [Google Scholar]
  2. Anderson J. M., Soll D. R. 1987; Unique phenotype of opaque cells in the white-opaque transition of Candida albicans . J Bacteriol 169:5579–5588
    [Google Scholar]
  3. Bale M. J., Yang C., Pfaller M. A. 1997; Evaluation of growth characteristics on blood agar and eosin methylene blue agar for the identification of Candida ( Torulopsis ) glabrata . Diagn Microbiol Infect Dis 28:65–67 [CrossRef]
    [Google Scholar]
  4. Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. 1991; Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173:2250–2255
    [Google Scholar]
  5. Bergen M., Voss E., Soll D. R. 1990; Switching at the cellular level in the white-opaque transition of C. albicans . J Gen Microbiol 136:1925–1936 [CrossRef]
    [Google Scholar]
  6. Berrouane Y. F., Herwaldt L. A., Pfaller M. A. 1999; Trends in antifungal use and epidemiology of nosocomial yeast infections in a university hospital. J Clin Microbiol 37:531–537
    [Google Scholar]
  7. Brandao J. C., Verissimo C., Rosado M. L., Osorio-Almeida M. L. 1995; Tracing the origin of a Candida albicans infection by pulsed field gel electrophoresis. J Mycol Med 5:31–34
    [Google Scholar]
  8. Cabib E., Bowers B. 1975; Timing and function of chitin synthesis in yeast. J Bacteriol 124:1586–1593
    [Google Scholar]
  9. Csank C., Haynes K. 2000; Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett 189:115–120 [CrossRef]
    [Google Scholar]
  10. Doi M., Homma M., Chindamporn A., Tanaka K. 1992; Estimation of chromosome number and size by pulse-field gel electrophoresis (PFGE) in medically important Candida species. J Gen Microbiol 138:2243–2251 [CrossRef]
    [Google Scholar]
  11. Enger L., Joly S., Pujol C., Simonson P., Pfaller M. A., Soll D. R. 2001; Cloning and characterization of a complex DNA fingerprinting probe for Candida parapsilosis . J Clin Microbiol 39:658–669 [CrossRef]
    [Google Scholar]
  12. Fidel P. L., Vazquez J. A., Sobel J. D. 1999; Candida glabrata : review of epidemiology, pathogenesis and clinical disease with comparison to C. albicans . Clin Microbiol Rev 12:80–96
    [Google Scholar]
  13. Fries B. C., Goldman D. C., Cherniak R., Ju R., Casadevall A. 1999; Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect Immun 67:6076–6083
    [Google Scholar]
  14. Gil C., Pomes R., Nombela C. 1990; Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures. J Bacteriol 172:2384–2391
    [Google Scholar]
  15. Goldman D., Fries B., Franzot S., Montella L., Casadevall A. 1998; Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA 95:14967–14972 [CrossRef]
    [Google Scholar]
  16. Hayashibe M., Katohda S. 1973; Initiation of budding and chitin ring. J Gen Appl Microbiol 9:23–29
    [Google Scholar]
  17. Hazen K. C. 1995; New and emerging yeast pathogens. Clin Microbiol Rev 8:462–478
    [Google Scholar]
  18. Joly S., Pujol C., Schröppel K., Soll D. R. 1996; Development of two species-specific fingerprinting probes for broad computer-assisted epidemiological studies of Candida tropicalis . J Clin Microbiol 34:3063–3071
    [Google Scholar]
  19. Lachke S. A., Srikantha T., Tsai L., Daniels K., Soll D. R. 2000; Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP . Infect Immun 68:884–895 [CrossRef]
    [Google Scholar]
  20. Lockhart S. R., Joly S., Pujol C., Sobel J., Pfaller M., Soll D. R. 1997; Development and verification of fingerprinting probes for Candida glabrata . Microbiology 143:3733–3746 [CrossRef]
    [Google Scholar]
  21. Lockhart S. R., Joly S., Vargas K., Swails-Wenger J., Enger L., Soll D. R. 1999; Natural defenses against Candida colonization breakdown in the oral cavity of the elderly. J Dent Res 78:857–868 [CrossRef]
    [Google Scholar]
  22. Mehra R. K., Garey J. R., Butt T. R., Gray W. R., Winge D. R. 1989; Candida glabrata metallothioneins: cloning and sequence of the genes and characterization of proteins. J Biol Chem 264:19747–19753
    [Google Scholar]
  23. Mehra R. K., Garey J. R., Winge D. R. 1990; Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata . J Biol Chem 265:6369–6375
    [Google Scholar]
  24. Merson-Davies L. A., Odds F. C. 1989; A morphology index for characterization of cell shape in Candida albicans . J Gen Microbiol 135:3143–3152
    [Google Scholar]
  25. Odds F. C. 1988 Candida and Candidiasis London: Baillière Tindall;
    [Google Scholar]
  26. Odds F. C., Merson-Davies L. A. 1989; Colony variation in Candida species. Mycoses 32:275–282
    [Google Scholar]
  27. Odds F. C., Rinaldi M. G., Cooper C. R. Jr, Fothergill A., Pasarell L., McGinnis M. R. 1997; Candida and Torulopsis : a blinded evaluation of use of pseudohypha formation as basis for identification of medically important yeasts. J Clin Microbiol 35:313–316
    [Google Scholar]
  28. Perez-Martin J., Uria J. A., Johnson A. D. 1999; Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18:2580–2592 [CrossRef]
    [Google Scholar]
  29. Pfaller M. A., Jones R. N., Messer S. A., Edmond M. B., Wenzel R. P., Group S. P. 1998; National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans : frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 30:121–129 [CrossRef]
    [Google Scholar]
  30. Pfaller M. A., Messer S. A., Hollis R. J., Jones R. N., Doern G. V., Brandt M. E., Haijeh R. A. 1999; Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn Microbiol Infect Dis 33:217–222 [CrossRef]
    [Google Scholar]
  31. Rikkerink E. H. A., Magee B. B., Magee P. T. 1988; Opaque-white phenotypic transition: a programmed morphological transition in Candida albicans . J Bacteriol 170:895–899
    [Google Scholar]
  32. Sanglard D., Ischer F., Calabrese D., Majcherczyk P. A., Bille J. 1999; The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765
    [Google Scholar]
  33. Sanglard D., Ischer F., Bille J. 2001; Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata . Antimicrob Agents Chemother 45:1174–1183 [CrossRef]
    [Google Scholar]
  34. Santos M. A. S., Ueda T., Watanabe K., Tuite M. F. 1997; The non-standard genetic code of Candida spp. an evolving genetic code or a novel mechanism for adaptation?. Mol Microbiol 26:423–431 [CrossRef]
    [Google Scholar]
  35. Slutsky B., Buffo J., Soll D. R. 1985; High frequency switching of colony morphology in Candida albicans . Science 23:666–669
    [Google Scholar]
  36. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., Soll D. R. 1987; ‘White-opaque transition’: a second high-frequency switching system in Candida albicans . J Bacteriol 169:189–197
    [Google Scholar]
  37. Soll D. R. 1992; High frequency switching in Candida albicans . Clin Microbiol Rev 5:183–203
    [Google Scholar]
  38. Soll D. R. 2002a; The molecular biology of switching in Candida . In Fungal Pathogenesis: Principles and Clinical Application pp 161–182 Edited by Cihlar R., Calderone R. New York: Marcel Dekker;
    [Google Scholar]
  39. Soll D. R. 2002b; Phenotypic switching. In Candida and Candidiasis pp 123–142 Edited by Calderone R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Soll D. R., Langtimm C. J., McDowell J., Hicks J., Galask R. 1987; High frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol 25:1611–1622
    [Google Scholar]
  41. Soll D. R., Staebell M., Langtimm C. J., Pfaller M., Hicks J., Rao T. V. G. 1988; Multiple Candida strains in the course of a single systemic infection. J Clin Microbiol 26:1448–1459
    [Google Scholar]
  42. Soll D. R., Anderson J., Bergen M. 1991; The developmental biology of the white-opaque transition in Candida albicans . In Candida albicans: Cellular and Molecular Biology pp 20–45 Edited by Prasad R. Berlin: Springer;
    [Google Scholar]
  43. Srikantha T., Tsai L., Daniels K., Enger L., Highley K., Soll D. R. 1998; The two-component hybrid kinase regulator CaNIK1 of Candida albicans . Microbiology 144:2715–2729 [CrossRef]
    [Google Scholar]
  44. Zhou P., Thiele D. J. 1991; Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae . Proc Natl Acad Sci USA 88:6112–6116 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2661
Loading
/content/journal/micro/10.1099/00221287-148-9-2661
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error