1887

Abstract

The authors have characterized a chromosomally localized two-gene operon, , which encodes a putative P1-type ATPase, CueA, and a MerR-type metalloregulatory protein, CueR, in PNL-MK25. Disruption of by the insertion of mini-Tn:: into the wild-type strain led to a mutant strain with a sixfold reduction in its tolerance to copper; however, the tolerance of this mutant strain to the other seven related transition metals tested was not affected. The sensitivity of the mutant strain was attributed to a higher level of accumulation of intracellular copper, suggesting the involvement of CueA in copper export. Insertion of the cloned operon into the copper-sensitive mutant strain fully restored its tolerance to copper. :: expression studies confirmed that the operon was transcriptionally regulated by copper and CueR. Studies done on the mutant strain complemented with and revealed partial functional redundancy of and , respectively, in copper tolerance. Thus, the results of this study clearly suggest the involvement of in copper homeostasis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-9-2857
2002-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/9/1482857a.html?itemId=/content/journal/micro/10.1099/00221287-148-9-2857&mimeType=html&fmt=ahah

References

  1. Bayle D., Wangler S., Weitzenegger T., Steinhilber W., Volz J., Przybylski M., Schafer K. P., Sachs G., Melchers K. 1998; Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis . J Bacteriol 180:317–329
    [Google Scholar]
  2. Beard S. J., Hashim R., Membrillo-Hernandez J., Hughes M. N., Poole R. K. 1997; Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene ( o732 ) encodes a cation transport ATPase. Mol Microbiol 25:883–891 [CrossRef]
    [Google Scholar]
  3. Bender C. L., Cooksey D. A. 1986; Indigenous plasmids in Pseudomonas syringae pv. tomato : conjugative transfer and role in copper resistance. J Bacteriol 165:534–541
    [Google Scholar]
  4. Bloemberg G. V., O’Toole G. A., Lugtenberg B. J. J., Kolter R. 1997; Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551
    [Google Scholar]
  5. Buffoni F., Ignesti G. 2000; The copper-containing amine oxidases: biochemical aspects and functional role. Mol Genet Metab 71:559–564 [CrossRef]
    [Google Scholar]
  6. Bull P. C., Cox D. W. 1994; Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet 10:246–252 [CrossRef]
    [Google Scholar]
  7. Camakaris J., Voskoboinik I., Mercer J. F. 1999; Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232 [CrossRef]
    [Google Scholar]
  8. Casse F., Boucher C., Julliot J. S., Michel M., Dénairé I. 1979; Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242 [CrossRef]
    [Google Scholar]
  9. Cervantes C., Gutierrez-Corona F. 1994; Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137
    [Google Scholar]
  10. Cooksey D. A., Azad H. R., Cha J., Lim C. 1990; Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 56:431–435
    [Google Scholar]
  11. Dameron C. T., Harrison M. D. 1998; Mechanisms of protection against copper toxicity. Am J Clin Nutr 67 (Suppl. 5:1091s–1097s
    [Google Scholar]
  12. Degtyarenko K. 2000; Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16:851–864 [CrossRef]
    [Google Scholar]
  13. Govantes F., Molina-Lopez J. A., Santero E. 1996; Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae . J Bacteriol 178:6817–6823
    [Google Scholar]
  14. Grass G., Rensing C. 2001; Genes involved in copper homeostasis in Escherichia coli . J Bacteriol 183:2145–2147 [CrossRef]
    [Google Scholar]
  15. Hofacker L., Fontana W., Stadler P. F., Bonhoeffer L. S., Tacker M., Schuster P. 1994; Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188 [CrossRef]
    [Google Scholar]
  16. Lee Y. A., Hendson M., Panopoulos N. J., Schroth M. N. 1994; Molecular cloning, chromososmal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis : homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188
    [Google Scholar]
  17. Lee S. W., Glickmann E., Cooksey D. A. 2001; Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67:1437–1444 [CrossRef]
    [Google Scholar]
  18. Lim C. K., Cooksey D. A. 1993; Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae . J Bacteriol 175:4492–4498
    [Google Scholar]
  19. Lund P. A., Brown N. L. 1987; Role of the merT and merP gene products of transposon Tn 501 in the induction and expression of resistance to mercuric ions. Gene 52:207–214 [CrossRef]
    [Google Scholar]
  20. Lutsenko S., Kaplan J. H. 1995; Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:15607–15613 [CrossRef]
    [Google Scholar]
  21. McCarthy J. E. G., Gualerzi C. 1990; Translational control of prokaryotic gene expression. Trends Genet 6:78–85 [CrossRef]
    [Google Scholar]
  22. Mellano M. A., Cooksey D. A. 1988; Induction of copper resistance operon from Pseudomonas syringae . J Bacteriol 170:4399–4401
    [Google Scholar]
  23. Odermatt A., Solioz M. 1995; Two trans -acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae . J Biol Chem 270:4349–4354 [CrossRef]
    [Google Scholar]
  24. Odermatt A., Suter H., Krapf R., Solioz M. 1993; Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J Biol Chem 268:12775–12779
    [Google Scholar]
  25. Outten F. W., Outten C. E., Hale J., O’Halloran T. V. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue. CueR. J Biol Chem 275:31024–31029 [CrossRef]
    [Google Scholar]
  26. Pillai B. V. S., Swarup S. 2002; Elucidation of flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151 [CrossRef]
    [Google Scholar]
  27. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Solioz M., Vulpe C. 1996; CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241 [CrossRef]
    [Google Scholar]
  30. Stall R. E., Loschke D. C., Jones J. B. 1986; Linkage of copper and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria . Phytopathology 76:240–243 [CrossRef]
    [Google Scholar]
  31. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  32. Stentz R., Loizel C., Malleret C., Zagorec M. 2000; Development of genetic tools for Lactobacillus sakei : disruption of the β-galactosidase gene and use of lacZ as a reporter gene to study regulation of the putative copper ATPase, AtkB. Appl Environ Microbiol 66:4272–4278 [CrossRef]
    [Google Scholar]
  33. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511 [CrossRef]
    [Google Scholar]
  34. Suarez A., Guttler A., Stratz M., Staendner L. H., Timmis K. N., Guzman C. A. 1997; Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196:69–74 [CrossRef]
    [Google Scholar]
  35. Syn C. K. C., Swarup S. 2000; A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem 278:86–90 [CrossRef]
    [Google Scholar]
  36. Tetaz T. J., Luke R. K. J. 1983; Plasmid-controlled resistance to copper in Escherichia coli . J Bacteriol 154:1263–1268
    [Google Scholar]
  37. Tom-Petersen A., Hosbond C., Nybroe O. 2001; Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol 38:59–67 [CrossRef]
    [Google Scholar]
  38. Vargas E., Gutierrez S., Ambriz M. E., Cervantes C. 1995; Chromosome-encoded inducible copper resistance in Pseudomonas strains. Antonie Leeuwenhoek 68:225–229 [CrossRef]
    [Google Scholar]
  39. Vats N., Lee S. F. 2001; Characterization of a copper-transport operon, copYAZ , from Streptococcus mutans . Microbiology 147:653–662
    [Google Scholar]
  40. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  41. Weissman Z., Berdicevsky I., Cavari B., Kornitzer D. 2000; The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci USA 97:3520–3525 [CrossRef]
    [Google Scholar]
  42. Yang C. H., Azad H. R., Cooksey D. A. 1996; A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens . Proc Natl Acad Sci USA 93:7315–7320 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-9-2857
Loading
/content/journal/micro/10.1099/00221287-148-9-2857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error