1887

Abstract

SUMMARY: Washed suspensions and cell-free extracts of decarb- oxylate leucine, valine, norvaline, isoleucine, and -amino- -butyric acid. The system differs from most bacterial decarboxylases in being optimally active near pH 7 and in not requiring acid conditions for its formation. The system is adaptive (inducible); the presence of either leucine, valine or isoleucine will simultaneously induce decarboxylase activity against each of the five amino acids listed above. No additive effects were found when two amino acids were offered to the system simultaneously. Pyridoxal phosphate is required as coenzyme at least for valine and leucine decarboxylation ; the affinity between apo- and co-enzyme is greater during decarboxylation of valine than leucine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-17-3-602
1957-12-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/17/3/mic-17-3-602.html?itemId=/content/journal/micro/10.1099/00221287-17-3-602&mimeType=html&fmt=ahah

References

  1. Anon 1950 Organic Reagents for Organic Analysis, 2nd ed.. p. 120 London:: Hopkin and Williams;
    [Google Scholar]
  2. Bernheim F., Bernheim M. L. C., Webster M. D. 1935; Oxidation of certain amino acids by ‘resting’ Bacillus proteus. J. biol. Chem 110:165
    [Google Scholar]
  3. Bremner J. M., Kenten R. H. 1951; Paper chromatography of amines. Biochem.J 49:651
    [Google Scholar]
  4. Chargaff E., Sprinson D. B. 1943; Studies in the mechanism of deamination of serine and threonine in biological systems. J. biol. Chem 151:273
    [Google Scholar]
  5. Conway E. J. 1947 Microdiffusion Analysis and Volumetric Error, 2nd ed.. London:: Crosby, Lockwood and Son;
    [Google Scholar]
  6. Demeny L. 1931; Arylsulphonalkylamides. Rec. Trav. chim. Pays-Bas 50:51
    [Google Scholar]
  7. Dewey D. L., Hoare D. S., Work E. 1954; Diaminopimelic acid decarboxylase in cells and extracts of Escherichia coli and Aerobacter aerogenes. Biochem.J 58:523
    [Google Scholar]
  8. Ekladius L., King H. K. 1956; The valine/leucine decarboxylase of Proteus: a study in coenzyme dissociation. Biochem.J 62:7P
    [Google Scholar]
  9. Ekladius L., King H. K. 1957; Estimation of lower aliphatic amines. Biochem.J 65:128
    [Google Scholar]
  10. Gale E. F. 1940; The production of amines by bacteria. I. The decarboxylation of amino acids by strains of Bacterium coli. Biochem.J 34:392
    [Google Scholar]
  11. Gale E. F. 1941; Production of amines by bacteria. 4. The decarboxylation of amino acids by organisms of the groups Clostridium and Proteus. Biochem.J 35:66
    [Google Scholar]
  12. Gale E. F. 1946; The bacterial amino acid decarboxylases. Advanc. Enzymol 6:1
    [Google Scholar]
  13. Green D. E. 1951; The cyclophorase system of enzymes. Biol. Rev 26:410
    [Google Scholar]
  14. Johnson T. B., Guest H. W. 1909; Researches on amines: synthesis of methyl- phenylethylamine. Amer. chem.J 42:340
    [Google Scholar]
  15. Kallio R. E., Porter J. R. 1950; Metabolism of cystine and cysteine by Proteus xmlgaris and Proteus morganii. J. Bact 60:607
    [Google Scholar]
  16. King H. K. 1953; The decarboxylation of valine and leucine by washed suspensions of Proteus vulgaris. Biochem.J 54:xi
    [Google Scholar]
  17. King H. K., Alexander H. 1948; The mechanical destruction of bacteria. J.gen. Microbiol 2:315
    [Google Scholar]
  18. Lineweaver H., Burk D. 1934; The determination of enzyme dissociation constants. J. Amer. chem. Soc 56:658
    [Google Scholar]
  19. McIlwain H. 1948; Preparation of cell-free bacterial extracts with powdered alumina. J.gen. Microbiol 2:288
    [Google Scholar]
  20. Marckwald W. 1899; Die Stereochemie des Stickstoffes. Ber. dtsch. chem. Ges 32:3508
    [Google Scholar]
  21. Meister A., Sober H. A., Tice S. V. 1951; Decarboxylation of aspartic acid to α-alanine. J. biol. Chem 189:577
    [Google Scholar]
  22. O’kane D. E., Gunsalus I. C. 1947; Resolution and purification of glutamic- aspartic transaminase. J.biol. Chem 170:425
    [Google Scholar]
  23. Papworth D. S. 1951 The Nitrogen Metabolism of Bacteria Thesis Liverpool.:
    [Google Scholar]
  24. Proom H., Woiwod A. J. 1951; Amine production in the genus Proteus. J. gen. Microbiol 5:930
    [Google Scholar]
  25. Stumpf P. K., Green D. E. 1944; l-Amino acid oxidase of Proteus vulgaris.. J.biol.Chem 153:387
    [Google Scholar]
  26. Tarr H. L. A. 1933; The anaerobic decomposition of l-cystine by washed cells of Proteus vulgaris. . Biochem. J 27:759
    [Google Scholar]
  27. Umbreit W. W., Gunsalus I. C. 1949; Codecarboxylase not pyridoxal-3-phosphate. J. biol. Chem 179:279
    [Google Scholar]
  28. Wadekind E. 1909; Über das Verhalten ungesattigter Gruppen in quartaren Ammoniumsalzen und tertiären Sulphonamiden. Ber. dtsch. chem. Ges 42:3939
    [Google Scholar]
  29. Willard W. L., Jones M. Z. 1940; Optical properties of phenylthiourea derivatives. J.Amer. chem. Soc 62:2876
    [Google Scholar]
  30. Wood W. A., Gunsalus I. C. 1951; d-Alanine formation: a racemase in Streptococcus faecalis. J. biol. Chem 190:403
    [Google Scholar]
  31. Wood W. A., Gunsalus I. C., Umbreit W. W. 1947; Function of pyridoxal phosphate. Resolution and purification of tryptophanase of Escherichia coli. J. biol. Chem 170:313
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-17-3-602
Loading
/content/journal/micro/10.1099/00221287-17-3-602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error